2008, 5(1): 175-204. doi: 10.3934/mbe.2008.5.175

Estimation of invasive pneumococcal disease dynamics parameters and the impact of conjugate vaccination in Australia

1. 

Department of Mathematics & Statistics, Arizona State University, Tempe, AZ, 85287-1804, United States

2. 

Center for Research in Scientific Computation, North Carolina State University, Raleigh, North Carolina 27695-8205

3. 

Mathematical, Computational & Modeling Science Center, Arizona State University, Tempe, AZ 85287-1904, United States

Received  August 2007 Revised  October 2007 Published  January 2008

Pneumococcal diseases, or infections from the etiological agent Streptococcus pneumoniae, have long been a major cause of morbidity and mortality worldwide. Recent advances in the development of vaccines for these infections have raised questions concerning their widespread and/or long-term use. In this work, we use surveillance data collected by the Australian National Notifiable Diseases Surveillance system to estimate parameters in a mathemat- ical model of pneumococcal infection dynamics in a population with partial vaccination. The parameters obtained are of particular interest as they are not typically available in reported literature or measurable. The calibrated model is then used to assess the impact of the recent federally funded program that provides pneumococcal vaccines to large risk groups. The results presented here suggest the state of these infections may be changing in response to the programs, and warrants close quantitative monitoring.
Citation: Karyn L. Sutton, H.T. Banks, Carlos Castillo-Chávez. Estimation of invasive pneumococcal disease dynamics parameters and the impact of conjugate vaccination in Australia. Mathematical Biosciences & Engineering, 2008, 5 (1) : 175-204. doi: 10.3934/mbe.2008.5.175
[1]

Chang Gong, Jennifer J. Linderman, Denise Kirschner. A population model capturing dynamics of tuberculosis granulomas predicts host infection outcomes. Mathematical Biosciences & Engineering, 2015, 12 (3) : 625-642. doi: 10.3934/mbe.2015.12.625

[2]

Blaise Faugeras, Olivier Maury. An advection-diffusion-reaction size-structured fish population dynamics model combined with a statistical parameter estimation procedure: Application to the Indian Ocean skipjack tuna fishery. Mathematical Biosciences & Engineering, 2005, 2 (4) : 719-741. doi: 10.3934/mbe.2005.2.719

[3]

Wei Feng, Xin Lu, Richard John Donovan Jr.. Population dynamics in a model for territory acquisition. Conference Publications, 2001, 2001 (Special) : 156-165. doi: 10.3934/proc.2001.2001.156

[4]

Fred Brauer, Zhisheng Shuai, P. van den Driessche. Dynamics of an age-of-infection cholera model. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1335-1349. doi: 10.3934/mbe.2013.10.1335

[5]

Jinliang Wang, Ran Zhang, Toshikazu Kuniya. A note on dynamics of an age-of-infection cholera model. Mathematical Biosciences & Engineering, 2016, 13 (1) : 227-247. doi: 10.3934/mbe.2016.13.227

[6]

Hui li, Manjun Ma. Global dynamics of a virus infection model with repulsive effect. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4783-4797. doi: 10.3934/dcdsb.2019030

[7]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[8]

Jim M. Cushing. The evolutionary dynamics of a population model with a strong Allee effect. Mathematical Biosciences & Engineering, 2015, 12 (4) : 643-660. doi: 10.3934/mbe.2015.12.643

[9]

Hui Wan, Huaiping Zhu. A new model with delay for mosquito population dynamics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1395-1410. doi: 10.3934/mbe.2014.11.1395

[10]

Chris Cosner, Andrew L. Nevai. Spatial population dynamics in a producer-scrounger model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1591-1607. doi: 10.3934/dcdsb.2015.20.1591

[11]

Henri Berestycki, Jean-Michel Roquejoffre, Luca Rossi. The periodic patch model for population dynamics with fractional diffusion. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 1-13. doi: 10.3934/dcdss.2011.4.1

[12]

Dianmo Li, Zhen Zhang, Zufei Ma, Baoyu Xie, Rui Wang. Allee effect and a catastrophe model of population dynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 629-634. doi: 10.3934/dcdsb.2004.4.629

[13]

G. Buffoni, S. Pasquali, G. Gilioli. A stochastic model for the dynamics of a stage structured population. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 517-525. doi: 10.3934/dcdsb.2004.4.517

[14]

Steffen Eikenberry, Sarah Hews, John D. Nagy, Yang Kuang. The dynamics of a delay model of hepatitis B virus infection with logistic hepatocyte growth. Mathematical Biosciences & Engineering, 2009, 6 (2) : 283-299. doi: 10.3934/mbe.2009.6.283

[15]

Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva. Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1159-1186. doi: 10.3934/mbe.2017060

[16]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 975-993. doi: 10.3934/dcdss.2020057

[17]

Paweł Góra, Abraham Boyarsky, Zhenyang LI, Harald Proppe. Statistical and deterministic dynamics of maps with memory. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4347-4378. doi: 10.3934/dcds.2017186

[18]

S. Yu. Pilyugin. Inverse shadowing by continuous methods. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 29-38. doi: 10.3934/dcds.2002.8.29

[19]

Michael Herty, Giuseppe Visconti. Kinetic methods for inverse problems. Kinetic & Related Models, 2019, 12 (5) : 1109-1130. doi: 10.3934/krm.2019042

[20]

Peixuan Weng, Xiao-Qiang Zhao. Spatial dynamics of a nonlocal and delayed population model in a periodic habitat. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 343-366. doi: 10.3934/dcds.2011.29.343

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

[Back to Top]