2008, 5(2): 299-313. doi: 10.3934/mbe.2008.5.299

Morphogenesis of the tumor patterns

1. 

Department of Physical-Chemistry, Faculty of Chemistry, University of Havana, Havana, Cuba, Cuba

Received  November 2007 Revised  December 2007 Published  March 2008

The mathematical modeling of tumor growth allows us to describe the most important regularities of these systems. A stochastic model, based on the most important processes that take place at the level of individual cells, is proposed to predict the dynamical behavior of the expected radius of the tumor and its fractal dimension. It was found that the tumor has a characteristic fractal dimension, which contains the necessary information to predict the tumor growth until it reaches a stationary state. This fractal dimension is distorted by the effects of external fluctuations. The model predicts a phenomenon which indicates stochastic resonance when the multiplicative and the additive noise are correlated.
Citation: Elena Izquierdo-Kulich, José Manuel Nieto-Villar. Morphogenesis of the tumor patterns. Mathematical Biosciences & Engineering, 2008, 5 (2) : 299-313. doi: 10.3934/mbe.2008.5.299
[1]

Elena Izquierdo-Kulich, José Manuel Nieto-Villar. Mesoscopic model for tumor growth. Mathematical Biosciences & Engineering, 2007, 4 (4) : 687-698. doi: 10.3934/mbe.2007.4.687

[2]

Dongxi Li, Ni Zhang, Ming Yan, Yanya Xing. Survival analysis for tumor growth model with stochastic perturbation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5707-5722. doi: 10.3934/dcdsb.2021041

[3]

T.L. Jackson. A mathematical model of prostate tumor growth and androgen-independent relapse. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 187-201. doi: 10.3934/dcdsb.2004.4.187

[4]

J. Ignacio Tello. On a mathematical model of tumor growth based on cancer stem cells. Mathematical Biosciences & Engineering, 2013, 10 (1) : 263-278. doi: 10.3934/mbe.2013.10.263

[5]

Hyun Geun Lee, Yangjin Kim, Junseok Kim. Mathematical model and its fast numerical method for the tumor growth. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1173-1187. doi: 10.3934/mbe.2015.12.1173

[6]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[7]

Rudolf Olach, Vincent Lučanský, Božena Dorociaková. The model of nutrients influence on the tumor growth. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021150

[8]

Jianjun Paul Tian, Kendall Stone, Thomas John Wallin. A simplified mathematical model of solid tumor regrowth with therapies. Conference Publications, 2009, 2009 (Special) : 771-779. doi: 10.3934/proc.2009.2009.771

[9]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 2729-2749. doi: 10.3934/dcdss.2020457

[10]

Michael Grinfeld, Harbir Lamba, Rod Cross. A mesoscopic stock market model with hysteretic agents. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 403-415. doi: 10.3934/dcdsb.2013.18.403

[11]

Victor Fabian Morales-Delgado, José Francisco Gómez-Aguilar, Marco Antonio Taneco-Hernández. Mathematical modeling approach to the fractional Bergman's model. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 805-821. doi: 10.3934/dcdss.2020046

[12]

Eduardo Ibargüen-Mondragón, Lourdes Esteva, Edith Mariela Burbano-Rosero. Mathematical model for the growth of Mycobacterium tuberculosis in the granuloma. Mathematical Biosciences & Engineering, 2018, 15 (2) : 407-428. doi: 10.3934/mbe.2018018

[13]

J.C. Arciero, T.L. Jackson, D.E. Kirschner. A mathematical model of tumor-immune evasion and siRNA treatment. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 39-58. doi: 10.3934/dcdsb.2004.4.39

[14]

Shuo Wang, Heinz Schättler. Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1223-1240. doi: 10.3934/mbe.2016040

[15]

Sophia R-J Jang, Hsiu-Chuan Wei. On a mathematical model of tumor-immune system interactions with an oncolytic virus therapy. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021184

[16]

Kentarou Fujie. Global asymptotic stability in a chemotaxis-growth model for tumor invasion. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 203-209. doi: 10.3934/dcdss.2020011

[17]

Mohammad A. Tabatabai, Wayne M. Eby, Karan P. Singh, Sejong Bae. T model of growth and its application in systems of tumor-immune dynamics. Mathematical Biosciences & Engineering, 2013, 10 (3) : 925-938. doi: 10.3934/mbe.2013.10.925

[18]

Marcelo E. de Oliveira, Luiz M. G. Neto. Directional entropy based model for diffusivity-driven tumor growth. Mathematical Biosciences & Engineering, 2016, 13 (2) : 333-341. doi: 10.3934/mbe.2015005

[19]

Andrea Tosin. Multiphase modeling and qualitative analysis of the growth of tumor cords. Networks & Heterogeneous Media, 2008, 3 (1) : 43-83. doi: 10.3934/nhm.2008.3.43

[20]

Tomás Caraballo, Renato Colucci. A comparison between random and stochastic modeling for a SIR model. Communications on Pure & Applied Analysis, 2017, 16 (1) : 151-162. doi: 10.3934/cpaa.2017007

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (5)

[Back to Top]