2008, 5(1): 35-60. doi: 10.3934/mbe.2008.5.35

A storage model with random release rate for modeling exposure to food contaminants

1. 

Modal'X - Université Paris X & CREST - LS, Universié Paris X, Bât. G, 200 avenue de la république, 92001 Nanterre, France

2. 

LTCI - UMR 5141 Telecom Paris / CNRS & Mét@risk - INRA, Telecom Paris - TSI, rue Barrault, 75634 Paris Cedex 13, France

3. 

Mét@risk - INRA & ISMT - HKUST, Hong Kong University of Science and Technology, ISMT, Clear Water Bay, HONG KONG, China

Received  April 2007 Revised  October 2007 Published  January 2008

This paper presents the study of a continuous-time piecewisedeterministic Markov process for describing the temporal evolution of exposure to a given food contaminant. The quantity X of food contaminant present in the body evolves through its accumulation after repeated dietary intakes on the one hand, and the pharmacokinetics behavior of the chemical on the other hand. In the dynamic modeling considered here, the accumulation phenomenon is modeled by a simple marked point process with positive i.i.d. marks, and elimination in between intakes occurs at a random linear rate θX, randomness of the coefficient θ accounting for the variability of the elimination process due to metabolic factors. Via embedded chain analysis, ergodic properties of this extension of the standard compound Poisson dam with (deterministic) linear release rate are investigated, the latter being of crucial importance in describing the long-term behavior of the exposure process (Xt)t≥0 and assessing values such as the proportion of time the contaminant body burden is over a certain threshold. We also highlight the fact that the exposure process is generally not directly observable in practice and establish a validity framework for simulation-based statistical methods by coupling analysis. Eventually, applications to methyl mercury contamination data are considered.
Citation: Patrice Bertail, Stéphan Clémençon, Jessica Tressou. A storage model with random release rate for modeling exposure to food contaminants. Mathematical Biosciences & Engineering, 2008, 5 (1) : 35-60. doi: 10.3934/mbe.2008.5.35
[1]

Zhichuan Zhu, Bo Yu, Li Yang. Globally convergent homotopy method for designing piecewise linear deterministic contractual function. Journal of Industrial & Management Optimization, 2014, 10 (3) : 717-741. doi: 10.3934/jimo.2014.10.717

[2]

Sze-Bi Hsu, Christopher A. Klausmeier, Chiu-Ju Lin. Analysis of a model of two parallel food chains. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 337-359. doi: 10.3934/dcdsb.2009.12.337

[3]

Vincent Renault, Michèle Thieullen, Emmanuel Trélat. Optimal control of infinite-dimensional piecewise deterministic Markov processes and application to the control of neuronal dynamics via Optogenetics. Networks & Heterogeneous Media, 2017, 12 (3) : 417-459. doi: 10.3934/nhm.2017019

[4]

Soliman A. A. Hamdallah, Sanyi Tang. Stability and bifurcation analysis of Filippov food chain system with food chain control strategy. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019244

[5]

Ana I. Muñoz, José Ignacio Tello. Mathematical analysis and numerical simulation of a model of morphogenesis. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1035-1059. doi: 10.3934/mbe.2011.8.1035

[6]

Rolf Rannacher. A short course on numerical simulation of viscous flow: Discretization, optimization and stability analysis. Discrete & Continuous Dynamical Systems - S, 2012, 5 (6) : 1147-1194. doi: 10.3934/dcdss.2012.5.1147

[7]

Veysel Fuat Hatipoğlu. A novel model for the contamination of a system of three artificial lakes. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020176

[8]

Rebeccah E. Marsh, Jack A. Tuszyński, Michael Sawyer, Kenneth J. E. Vos. A model of competing saturable kinetic processes with application to the pharmacokinetics of the anticancer drug paclitaxel. Mathematical Biosciences & Engineering, 2011, 8 (2) : 325-354. doi: 10.3934/mbe.2011.8.325

[9]

Wei Feng, Nicole Rocco, Michael Freeze, Xin Lu. Mathematical analysis on an extended Rosenzweig-MacArthur model of tri-trophic food chain. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1215-1230. doi: 10.3934/dcdss.2014.7.1215

[10]

Maciek D. Korzec, Hao Wu. Analysis and simulation for an isotropic phase-field model describing grain growth. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2227-2246. doi: 10.3934/dcdsb.2014.19.2227

[11]

Xianlong Fu, Dongmei Zhu. Stability results for a size-structured population model with delayed birth process. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 109-131. doi: 10.3934/dcdsb.2013.18.109

[12]

Ismail Abdulrashid, Abdallah A. M. Alsammani, Xiaoying Han. Stability analysis of a chemotherapy model with delays. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 989-1005. doi: 10.3934/dcdsb.2019002

[13]

Stelian Ion, Gabriela Marinoschi. A self-organizing criticality mathematical model for contamination and epidemic spreading. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 383-405. doi: 10.3934/dcdsb.2017018

[14]

Weihua Ruan. Markovian strategies for piecewise deterministic differential games with continuous and impulse controls. Journal of Dynamics & Games, 2019, 6 (4) : 337-366. doi: 10.3934/jdg.2019022

[15]

Yulan Lu, Minghui Song, Mingzhu Liu. Convergence rate and stability of the split-step theta method for stochastic differential equations with piecewise continuous arguments. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 695-717. doi: 10.3934/dcdsb.2018203

[16]

Fabio Augusto Milner, Ruijun Zhao. A deterministic model of schistosomiasis with spatial structure. Mathematical Biosciences & Engineering, 2008, 5 (3) : 505-522. doi: 10.3934/mbe.2008.5.505

[17]

Blessing O. Emerenini, Stefanie Sonner, Hermann J. Eberl. Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects. Mathematical Biosciences & Engineering, 2017, 14 (3) : 625-653. doi: 10.3934/mbe.2017036

[18]

Dongxue Yan, Xianlong Fu. Asymptotic analysis of a spatially and size-structured population model with delayed birth process. Communications on Pure & Applied Analysis, 2016, 15 (2) : 637-655. doi: 10.3934/cpaa.2016.15.637

[19]

Dongxue Yan, Yu Cao, Xianlong Fu. Asymptotic analysis of a size-structured cannibalism population model with delayed birth process. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1975-1998. doi: 10.3934/dcdsb.2016032

[20]

Marek Bodnar, Monika Joanna Piotrowska, Urszula Foryś, Ewa Nizińska. Model of tumour angiogenesis -- analysis of stability with respect to delays. Mathematical Biosciences & Engineering, 2013, 10 (1) : 19-35. doi: 10.3934/mbe.2013.10.19

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

[Back to Top]