# American Institute of Mathematical Sciences

2008, 5(3): 437-455. doi: 10.3934/mbe.2008.5.437

## Existence of multiple-stable equilibria for a multi-drug-resistant model of mycobacterium tuberculosis

 1 Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada 2 Department of Mathematical Sciences, Montclair State University, Upper Montclair, NJ 07043

Published  June 2008

The resurgence of multi-drug-resistant tuberculosis in some parts of Europe and North America calls for a mathematical study to assess the impact of the emergence and spread of such strain on the global effort to effectively control the burden of tuberculosis. This paper presents a deterministic compartmental model for the transmission dynamics of two strains of tubercu- losis, a drug-sensitive (wild) one and a multi-drug-resistant strain. The model allows for the assessment of the treatment of people infected with the wild strain. The qualitative analysis of the model reveals the following. The model has a disease-free equilibrium, which is locally asymptotically stable if a cer- tain threshold, known as the effective reproduction number, is less than unity. Further, the model undergoes a backward bifurcation, where the disease-free equilibrium coexists with a stable endemic equilibrium. One of the main nov- elties of this study is the numerical illustration of tri-stable equilibria, where the disease-free equilibrium coexists with two stable endemic equilibrium when the aforementioned threshold is less than unity, and a bi-stable setup, involving two stable endemic equilibria, when the effective reproduction number is greater than one. This, to our knowledge, is the first time such dynamical features have been observed in TB dynamics. Finally, it is shown that the backward bifurcation phenomenon in this model arises due to the exogenous re-infection property of tuberculosis.
Citation: Abba B. Gumel, Baojun Song. Existence of multiple-stable equilibria for a multi-drug-resistant model of mycobacterium tuberculosis. Mathematical Biosciences & Engineering, 2008, 5 (3) : 437-455. doi: 10.3934/mbe.2008.5.437
 [1] Hiroshi Matsuzawa, Mitsunori Nara. Asymptotic behavior of spreading fronts in an anisotropic multi-stable equation on $\mathit{\boldsymbol{\mathbb{R}^N}}$. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022069 [2] Andrzej Swierniak, Jaroslaw Smieja. Analysis and Optimization of Drug Resistant an Phase-Specific Cancer. Mathematical Biosciences & Engineering, 2005, 2 (3) : 657-670. doi: 10.3934/mbe.2005.2.657 [3] Thomas Lepoutre, Salomé Martínez. Steady state analysis for a relaxed cross diffusion model. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 613-633. doi: 10.3934/dcds.2014.34.613 [4] Shixing Li, Dongming Yan. On the steady state bifurcation of the Cahn-Hilliard/Allen-Cahn system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3077-3088. doi: 10.3934/dcdsb.2018301 [5] Bing Zeng, Pei Yu. A hierarchical parametric analysis on Hopf bifurcation of an epidemic model. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022069 [6] Qi Wang. On the steady state of a shadow system to the SKT competition model. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2941-2961. doi: 10.3934/dcdsb.2014.19.2941 [7] Yoshiaki Muroya. A Lotka-Volterra system with patch structure (related to a multi-group SI epidemic model). Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 999-1008. doi: 10.3934/dcdss.2015.8.999 [8] Silvia Martorano Raimundo, Hyun Mo Yang, Ezio Venturino. Theoretical assessment of the relative incidences of sensitive and resistant tuberculosis epidemic in presence of drug treatment. Mathematical Biosciences & Engineering, 2014, 11 (4) : 971-993. doi: 10.3934/mbe.2014.11.971 [9] Tao Feng, Zhipeng Qiu. Global analysis of a stochastic TB model with vaccination and treatment. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2923-2939. doi: 10.3934/dcdsb.2018292 [10] Takashi Suzuki, Shuji Yoshikawa. Stability of the steady state for multi-dimensional thermoelastic systems of shape memory alloys. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 209-217. doi: 10.3934/dcdss.2012.5.209 [11] Toshikazu Kuniya, Jinliang Wang, Hisashi Inaba. A multi-group SIR epidemic model with age structure. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3515-3550. doi: 10.3934/dcdsb.2016109 [12] Toshikazu Kuniya, Yoshiaki Muroya. Global stability of a multi-group SIS epidemic model for population migration. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1105-1118. doi: 10.3934/dcdsb.2014.19.1105 [13] Xueying Sun, Renhao Cui. Existence and asymptotic profiles of the steady state for a diffusive epidemic model with saturated incidence and spontaneous infection mechanism. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4503-4520. doi: 10.3934/dcdss.2021120 [14] Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045 [15] Martin Gugat, Alexander Keimer, Günter Leugering, Zhiqiang Wang. Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks. Networks and Heterogeneous Media, 2015, 10 (4) : 749-785. doi: 10.3934/nhm.2015.10.749 [16] Urszula Ledzewicz, Heinz Schättler, Mostafa Reisi Gahrooi, Siamak Mahmoudian Dehkordi. On the MTD paradigm and optimal control for multi-drug cancer chemotherapy. Mathematical Biosciences & Engineering, 2013, 10 (3) : 803-819. doi: 10.3934/mbe.2013.10.803 [17] Jinliang Wang, Hongying Shu. Global analysis on a class of multi-group SEIR model with latency and relapse. Mathematical Biosciences & Engineering, 2016, 13 (1) : 209-225. doi: 10.3934/mbe.2016.13.209 [18] Ikuo Arizono, Yasuhiko Takemoto. Statistical mechanics approach for steady-state analysis in M/M/s queueing system with balking. Journal of Industrial and Management Optimization, 2022, 18 (1) : 25-44. doi: 10.3934/jimo.2020141 [19] Sze-Bi Hsu, Feng-Bin Wang. On a mathematical model arising from competition of Phytoplankton species for a single nutrient with internal storage: steady state analysis. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1479-1501. doi: 10.3934/cpaa.2011.10.1479 [20] Seung-Yeal Ha, Dohyun Kim, Jaeseung Lee, Se Eun Noh. Emergent dynamics of an orientation flocking model for multi-agent system. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2037-2060. doi: 10.3934/dcds.2020105

2018 Impact Factor: 1.313