
Previous Article
Biological control of the chemostat with nonmonotonic response and different removal rates
 MBE Home
 This Issue

Next Article
A deterministic model of schistosomiasis with spatial structure
Modeling the rapid spread of avian influenza (H5N1) in India
1.  Indian Statistical Institute, 203 B.T. Road, Kolkata 700108, India 
[1] 
Lesia V. Baranovska. Pursuit differentialdifference games with pure timelag. Discrete & Continuous Dynamical Systems  B, 2019, 24 (3) : 10211031. doi: 10.3934/dcdsb.2019004 
[2] 
Louis D. Bergsman, James M. Hyman, Carrie A. Manore. A mathematical model for the spread of west nile virus in migratory and resident birds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 401424. doi: 10.3934/mbe.2015009 
[3] 
Antonio Magaña, Alain Miranville, Ramón Quintanilla. On the time decay in phase–lag thermoelasticity with two temperatures. Electronic Research Archive, 2019, 27: 719. doi: 10.3934/era.2019007 
[4] 
Anna Chiara Lai, Paola Loreti. Selfsimilar control systems and applications to zygodactyl bird's foot. Networks & Heterogeneous Media, 2015, 10 (2) : 401419. doi: 10.3934/nhm.2015.10.401 
[5] 
Urszula Ledzewicz, Behrooz Amini, Heinz Schättler. Dynamics and control of a mathematical model for metronomic chemotherapy. Mathematical Biosciences & Engineering, 2015, 12 (6) : 12571275. doi: 10.3934/mbe.2015.12.1257 
[6] 
Cecilia Cavaterra, Denis Enăchescu, Gabriela Marinoschi. Sliding mode control of the Hodgkin–Huxley mathematical model. Evolution Equations & Control Theory, 2019, 8 (4) : 883902. doi: 10.3934/eect.2019043 
[7] 
Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479502. doi: 10.3934/jgm.2014.6.479 
[8] 
Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic & Related Models, 2009, 2 (4) : 707725. doi: 10.3934/krm.2009.2.707 
[9] 
Zhuangyi Liu, Ramón Quintanilla. Time decay in dualphaselag thermoelasticity: Critical case. Communications on Pure & Applied Analysis, 2018, 17 (1) : 177190. doi: 10.3934/cpaa.2018011 
[10] 
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems  B, 2013, 18 (7) : 19091927. doi: 10.3934/dcdsb.2013.18.1909 
[11] 
V. Lanza, D. Ambrosi, L. Preziosi. Exogenous control of vascular network formation in vitro: a mathematical model. Networks & Heterogeneous Media, 2006, 1 (4) : 621637. doi: 10.3934/nhm.2006.1.621 
[12] 
Shuo Wang, Heinz Schättler. Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences & Engineering, 2016, 13 (6) : 12231240. doi: 10.3934/mbe.2016040 
[13] 
Colette Calmelet, John Hotchkiss, Philip Crooke. A mathematical model for antibiotic control of bacteria in peritoneal dialysis associated peritonitis. Mathematical Biosciences & Engineering, 2014, 11 (6) : 14491464. doi: 10.3934/mbe.2014.11.1449 
[14] 
JoseLuis RocaGonzalez. Designing dynamical systems for security and defence network knowledge management. A case of study: Airport bird control falconers organizations. Discrete & Continuous Dynamical Systems  S, 2015, 8 (6) : 13111329. doi: 10.3934/dcdss.2015.8.1311 
[15] 
Elamin H. Elbasha. Model for hepatitis C virus transmissions. Mathematical Biosciences & Engineering, 2013, 10 (4) : 10451065. doi: 10.3934/mbe.2013.10.1045 
[16] 
Nicola Bellomo, Youshan Tao. Stabilization in a chemotaxis model for virus infection. Discrete & Continuous Dynamical Systems  S, 2018, 0 (0) : 105117. doi: 10.3934/dcdss.2020006 
[17] 
Xuejuan Lu, Lulu Hui, Shengqiang Liu, Jia Li. A mathematical model of HTLVI infection with two time delays. Mathematical Biosciences & Engineering, 2015, 12 (3) : 431449. doi: 10.3934/mbe.2015.12.431 
[18] 
Faker Ben Belgacem. Uniqueness for an illposed reactiondispersion model. Application to organic pollution in streamwaters. Inverse Problems & Imaging, 2012, 6 (2) : 163181. doi: 10.3934/ipi.2012.6.163 
[19] 
Shu Zhang, Jian Xu. Timevarying delayed feedback control for an internet congestion control model. Discrete & Continuous Dynamical Systems  B, 2011, 16 (2) : 653668. doi: 10.3934/dcdsb.2011.16.653 
[20] 
Andrei Korobeinikov, Aleksei Archibasov, Vladimir Sobolev. Order reduction for an RNA virus evolution model. Mathematical Biosciences & Engineering, 2015, 12 (5) : 10071016. doi: 10.3934/mbe.2015.12.1007 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]