2008, 5(3): 567-583. doi: 10.3934/mbe.2008.5.567

Stabilization due to predator interference: comparison of different analysis approaches

1. 

Dept. Theor. Biology, Vrije Universiteit, de Boelelaan 1087, 1081 HV Amsterdam, Netherlands, Netherlands

2. 

ICBM, Carl von Ossietzky Universität, PF 2503, 26111 Oldenburg, Germany

3. 

Dept. of Chem. Eng., Princeton University, Engineering Quadrangle, Princeton, NJ 08540, United States

4. 

Department of Theoretical Biology, Faculty of Earth and Life Sciences, Vrije Universiteit, de Boelelaan 1087, 1081 HV Amsterdam, Netherlands

5. 

Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky Universität Oldenburg, PF 2503, 26111 Oldenburg

Received  December 2007 Revised  March 2008 Published  June 2008

We study the influence of the particular form of the functional response in two-dimensional predator-prey models with respect to the stability of the nontrivial equilibrium. This equilibrium is stable between its appearance at a transcritical bifurcation and its destabilization at a Hopf bifurcation, giving rise to periodic behavior. Based on local bifurcation analysis, we introduce a classification of stabilizing effects. The classical Rosenzweig-MacArthur model can be classified as weakly stabilizing, undergoing the paradox of enrichment, while the well known Beddington-DeAngelis model can be classified as strongly stabilizing. Under certain conditions we obtain a complete stabilization, resulting in an avoidance of limit cycles. Both models, in their conventional formulation, are compared to a generalized, steady-state independent two-dimensional version of these models, based on a previously developed normalization method. We show explicitly how conventional and generalized models are related and how to interpret the results from the rather abstract stability analysis of generalized models.
Citation: G.A.K. van Voorn, D. Stiefs, T. Gross, B. W. Kooi, Ulrike Feudel, S.A.L.M. Kooijman. Stabilization due to predator interference: comparison of different analysis approaches. Mathematical Biosciences & Engineering, 2008, 5 (3) : 567-583. doi: 10.3934/mbe.2008.5.567
[1]

Xiao He, Sining Zheng. Bifurcation analysis and dynamic behavior to a predator-prey model with Beddington-DeAngelis functional response and protection zone. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2020117

[2]

Yinshu Wu, Wenzhang Huang. Global stability of the predator-prey model with a sigmoid functional response. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1159-1167. doi: 10.3934/dcdsb.2019214

[3]

Hongwei Yin, Xiaoyong Xiao, Xiaoqing Wen. Analysis of a Lévy-diffusion Leslie-Gower predator-prey model with nonmonotonic functional response. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2121-2151. doi: 10.3934/dcdsb.2018228

[4]

Qiumei Zhang, Daqing Jiang, Li Zu. The stability of a perturbed eco-epidemiological model with Holling type II functional response by white noise. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 295-321. doi: 10.3934/dcdsb.2015.20.295

[5]

Jinhu Xu, Yicang Zhou. Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay. Mathematical Biosciences & Engineering, 2016, 13 (2) : 343-367. doi: 10.3934/mbe.2015006

[6]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[7]

Juping Ji, Lin Wang. Bifurcation and stability analysis for a nutrient-phytoplankton model with toxic effects. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020135

[8]

Xiaodong Fan, Tian Qin. Stability analysis for generalized semi-infinite optimization problems under functional perturbations. Journal of Industrial & Management Optimization, 2020, 16 (3) : 1221-1233. doi: 10.3934/jimo.2018201

[9]

Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri. Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 75-96. doi: 10.3934/mbe.2012.9.75

[10]

Haiying Jing, Zhaoyu Yang. The impact of state feedback control on a predator-prey model with functional response. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 607-614. doi: 10.3934/dcdsb.2004.4.607

[11]

Ya Li, Z. Feng. Dynamics of a plant-herbivore model with toxin-induced functional response. Mathematical Biosciences & Engineering, 2010, 7 (1) : 149-169. doi: 10.3934/mbe.2010.7.149

[12]

Hai-Xia Li, Jian-Hua Wu, Yan-Ling Li, Chun-An Liu. Positive solutions to the unstirred chemostat model with Crowley-Martin functional response. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2951-2966. doi: 10.3934/dcdsb.2017128

[13]

Sumei Li, Yicang Zhou. Backward bifurcation of an HTLV-I model with immune response. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 863-881. doi: 10.3934/dcdsb.2016.21.863

[14]

Ming Liu, Dongpo Hu, Fanwei Meng. Stability and bifurcation analysis in a delay-induced predator-prey model with Michaelis-Menten type predator harvesting. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020259

[15]

Shubo Zhao, Ping Liu, Mingchao Jiang. Stability and bifurcation analysis in a chemotaxis bistable growth system. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1165-1174. doi: 10.3934/dcdss.2017063

[16]

Diego Samuel Rodrigues, Paulo Fernando de Arruda Mancera. Mathematical analysis and simulations involving chemotherapy and surgery on large human tumours under a suitable cell-kill functional response. Mathematical Biosciences & Engineering, 2013, 10 (1) : 221-234. doi: 10.3934/mbe.2013.10.221

[17]

Jeng-Huei Chen. An analysis of functional curability on HIV infection models with Michaelis-Menten-type immune response and its generalization. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2089-2120. doi: 10.3934/dcdsb.2017086

[18]

Tzung-shin Yeh. S-shaped and broken s-shaped bifurcation curves for a multiparameter diffusive logistic problem with holling type-Ⅲ functional response. Communications on Pure & Applied Analysis, 2017, 16 (2) : 645-670. doi: 10.3934/cpaa.2017032

[19]

Jungho Park. Bifurcation and stability of the generalized complex Ginzburg--Landau equation. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1237-1253. doi: 10.3934/cpaa.2008.7.1237

[20]

Yu-Xia Wang, Wan-Tong Li. Spatial degeneracy vs functional response. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2811-2837. doi: 10.3934/dcdsb.2016074

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (14)

[Back to Top]