• Previous Article
    Modeling evolution and persistence of neurological viral diseases in wild populations
  • MBE Home
  • This Issue
  • Next Article
    Artificial neural networks and remote sensing in the analysis of the highly variable Pampean shallow lakes
2008, 5(4): 713-727. doi: 10.3934/mbe.2008.5.713

Spatial spread of sexually transmitted diseases within susceptible populations at demographic steady state

1. 

Department of Mathematics and Statistics, Arizona State University, Tempe, AZ 85287, United States

2. 

Department of Mathematics, University of Louisville, Louisville, KY 40292, United States

Received  December 2007 Revised  May 2008 Published  October 2008

In this study, we expand on the susceptible-infected-susceptible (SIS) heterosexual mixing setting by including the movement of individuals of both genders in a spatial domain in order to more comprehensively address the transmission dynamics of competing strains of sexually-transmitted pathogens. In prior models, these transmission dynamics have only been studied in the context of nonexplicitly mobile heterosexually active populations at the demographic steady state, or, explicitly in the simplest context of SIS frameworks whose limiting systems are order preserving. We introduce reaction-diffusion equations to study the dynamics of sexually-transmitted diseases (STDs) in spatially mobile heterosexually active populations. To accomplish this, we study a single-strain STD model, and discuss in what forms and at what speed the disease spreads to noninfected regions as it expands its spatial range. The dynamics of two competing distinct strains of the same pathogen on this population are then considered. The focus is on the investigation of the spatial transition dynamics between the two endemic equilibria supported by the nonspatial corresponding model. We establish conditions for the successful invasion of a population living in endemic conditions by introducing a strain with higher fitness. It is shown that there exists a unique spreading speed (where the spreading speed is characterized as the slowest speed of a class of traveling waves connecting two endemic equilibria) at which the infectious population carrying the invading stronger strain spreads into the space where an equilibrium distribution has been established by the population with the weaker strain. Finally, we give sufficient conditions under which an explicit formula for the spreading speed can be found.
Citation: Carlos Castillo-Chavez, Bingtuan Li. Spatial spread of sexually transmitted diseases within susceptible populations at demographic steady state. Mathematical Biosciences & Engineering, 2008, 5 (4) : 713-727. doi: 10.3934/mbe.2008.5.713
[1]

Wendi Wang. Population dispersal and disease spread. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 797-804. doi: 10.3934/dcdsb.2004.4.797

[2]

Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067

[3]

Karen R. Ríos-Soto, Baojun Song, Carlos Castillo-Chavez. Epidemic spread of influenza viruses: The impact of transient populations on disease dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 199-222. doi: 10.3934/mbe.2011.8.199

[4]

Xue Zhang, Shuni Song, Jianhong Wu. Onset and termination of oscillation of disease spread through contaminated environment. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1515-1533. doi: 10.3934/mbe.2017079

[5]

W. E. Fitzgibbon, J. J. Morgan. Analysis of a reaction diffusion model for a reservoir supported spread of infectious disease. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6239-6259. doi: 10.3934/dcdsb.2019137

[6]

Daniel Maxin, Fabio Augusto Milner. The effect of nonreproductive groups on persistent sexually transmitted diseases. Mathematical Biosciences & Engineering, 2007, 4 (3) : 505-522. doi: 10.3934/mbe.2007.4.505

[7]

Min Zhu, Xiaofei Guo, Zhigui Lin. The risk index for an SIR epidemic model and spatial spreading of the infectious disease. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1565-1583. doi: 10.3934/mbe.2017081

[8]

Dashun Xu, Xiao-Qiang Zhao. Asymptotic speed of spread and traveling waves for a nonlocal epidemic model. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 1043-1056. doi: 10.3934/dcdsb.2005.5.1043

[9]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020047

[10]

Xiang-Sheng Wang, Haiyan Wang, Jianhong Wu. Traveling waves of diffusive predator-prey systems: Disease outbreak propagation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3303-3324. doi: 10.3934/dcds.2012.32.3303

[11]

Zengji Du, Zhaosheng Feng. Existence and asymptotic behaviors of traveling waves of a modified vector-disease model. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1899-1920. doi: 10.3934/cpaa.2018090

[12]

Peixuan Weng. Spreading speed and traveling wavefront of an age-structured population diffusing in a 2D lattice strip. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 883-904. doi: 10.3934/dcdsb.2009.12.883

[13]

Chang-Hong Wu. Spreading speed and traveling waves for a two-species weak competition system with free boundary. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2441-2455. doi: 10.3934/dcdsb.2013.18.2441

[14]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

[15]

Changbing Hu, Yang Kuang, Bingtuan Li, Hao Liu. Spreading speeds and traveling wave solutions in cooperative integral-differential systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1663-1684. doi: 10.3934/dcdsb.2015.20.1663

[16]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[17]

Jane M. Heffernan, Yijun Lou, Marc Steben, Jianhong Wu. Cost-effectiveness evaluation of gender-based vaccination programs against sexually transmitted infections. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 447-466. doi: 10.3934/dcdsb.2014.19.447

[18]

Linghai Zhang. Wave speed analysis of traveling wave fronts in delayed synaptically coupled neuronal networks. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2405-2450. doi: 10.3934/dcds.2014.34.2405

[19]

Mahin Salmani, P. van den Driessche. A model for disease transmission in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 185-202. doi: 10.3934/dcdsb.2006.6.185

[20]

Roberto A. Saenz, Herbert W. Hethcote. Competing species models with an infectious disease. Mathematical Biosciences & Engineering, 2006, 3 (1) : 219-235. doi: 10.3934/mbe.2006.3.219

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]