2008, 5(1): 75-83. doi: 10.3934/mbe.2008.5.75

Self-organizing models of bacterial aggregation states


Dipartimento di Scienze Microbiologiche Genetiche e Molecolari, Università di Messina, Salita Sperone, 31 I-98166 Villaggio S. Agata, Messina, Italy, Italy, Italy


Dipartimento di Ingegneria Elettrica Elettronica e dei Sistemi, Facoltà di Ingegneria, Università degli Studi di Catania, viale A. Doria 6, 95125 Catania, Italy


Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria, 6, 95125 Catania, Italy

Received  July 2007 Revised  November 2007 Published  January 2008

In this work, aggregation states of bacteria on engineered surfaces are investigated both from the experimental point of view and from the theo- retical one. The starting point of this work is a series of experiments carried out on abiotic surfaces in which bacteria adhere forming self-organized patterns. To reproduce the main characteristics of the phenomenon a model based on self-organization of a group of agents has been used. The agents represent bac- teria and are free to move on a given surface. On the basis of local rules they may adhere and then eventually form self-organized aggregates. Our numerical results demonstrate that few simple rules are able to explain the emergence of self-organized patterns. Depending on the parameters used, the model is able to reproduce the aggregation patterns observed under different experimental conditions and to predict the behavior of a culture of two bacterial species.
Citation: Manuela Caratozzolo, Santina Carnazza, Luigi Fortuna, Mattia Frasca, Salvatore Guglielmino, Giovanni Gurrieri, Giovanni Marletta. Self-organizing models of bacterial aggregation states. Mathematical Biosciences & Engineering, 2008, 5 (1) : 75-83. doi: 10.3934/mbe.2008.5.75

Razvan C. Fetecau, Beril Zhang. Self-organization on Riemannian manifolds. Journal of Geometric Mechanics, 2019, 11 (3) : 397-426. doi: 10.3934/jgm.2019020


Holly Gaff. Preliminary analysis of an agent-based model for a tick-borne disease. Mathematical Biosciences & Engineering, 2011, 8 (2) : 463-473. doi: 10.3934/mbe.2011.8.463


Gianluca D'Antonio, Paul Macklin, Luigi Preziosi. An agent-based model for elasto-plastic mechanical interactions between cells, basement membrane and extracellular matrix. Mathematical Biosciences & Engineering, 2013, 10 (1) : 75-101. doi: 10.3934/mbe.2013.10.75


Franziska Hinkelmann, Reinhard Laubenbacher. Boolean models of bistable biological systems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1443-1456. doi: 10.3934/dcdss.2011.4.1443


P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1


Denis de Carvalho Braga, Luis Fernando Mello, Carmen Rocşoreanu, Mihaela Sterpu. Lyapunov coefficients for non-symmetrically coupled identical dynamical systems. Application to coupled advertising models. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 785-803. doi: 10.3934/dcdsb.2009.11.785


Zhiyong Sun, Toshiharu Sugie. Identification of Hessian matrix in distributed gradient-based multi-agent coordination control systems. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 297-318. doi: 10.3934/naco.2019020


Richard Carney, Monique Chyba, Chris Gray, George Wilkens, Corey Shanbrom. Multi-agent systems for quadcopters. Journal of Geometric Mechanics, 2021  doi: 10.3934/jgm.2021005


Dieter Armbruster, Christian Ringhofer, Andrea Thatcher. A kinetic model for an agent based market simulation. Networks & Heterogeneous Media, 2015, 10 (3) : 527-542. doi: 10.3934/nhm.2015.10.527


Yang Kuang, John D. Nagy, James J. Elser. Biological stoichiometry of tumor dynamics: Mathematical models and analysis. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 221-240. doi: 10.3934/dcdsb.2004.4.221


Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1827-1842. doi: 10.3934/dcdsb.2020364


Matteo Petrera, Yuri B. Suris. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor. Journal of Computational Dynamics, 2019, 6 (2) : 401-408. doi: 10.3934/jcd.2019020


Jingang Zhai, Guangmao Jiang, Jianxiong Ye. Optimal dilution strategy for a microbial continuous culture based on the biological robustness. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 59-69. doi: 10.3934/naco.2015.5.59


Olusola Kolebaje, Ebenezer Bonyah, Lateef Mustapha. The first integral method for two fractional non-linear biological models. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 487-502. doi: 10.3934/dcdss.2019032


Jacques Demongeot, Dan Istrate, Hajer Khlaifi, Lucile Mégret, Carla Taramasco, René Thomas. From conservative to dissipative non-linear differential systems. An application to the cardio-respiratory regulation. Discrete & Continuous Dynamical Systems - S, 2020, 13 (8) : 2121-2134. doi: 10.3934/dcdss.2020181


Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete & Continuous Dynamical Systems, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i


Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116


Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure & Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017


Nadia Loy, Andrea Tosin. Boltzmann-type equations for multi-agent systems with label switching. Kinetic & Related Models, 2021, 14 (5) : 867-894. doi: 10.3934/krm.2021027


John Bissell, Brian Straughan. Discontinuity waves as tipping points: Applications to biological & sociological systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1911-1934. doi: 10.3934/dcdsb.2014.19.1911

[Back to Top]