2008, 5(4): 831-842. doi: 10.3934/mbe.2008.5.831

Modeling the daily activities of breeding colonial seabirds: Dynamic occupancy patterns in multiple habitat patches

1. 

Department of Mathematics, Andrews University, Berrien Springs, MI 49104, United States, United States

2. 

Biology Department, Andrews University, Berrien Springs, MI 49104, United States, United States

Received  December 2007 Revised  May 2008 Published  October 2008

We constructed differential equation models for the diurnal abundance and distribution of breeding glaucous-winged gulls (Larus glaucescens) as they moved among nesting and non-nesting habitat patches. We used time scale techniques to reduce the differential equations to algebraic equations and connected the models to field data. The models explained the data as a function of abiotic environmental variables with $R^{2}=0.57$. A primary goal of this study is to demonstrate the utility of a methodology that can be used by ecologists and wildlife managers to understand and predict daily activity patterns in breeding seabirds.
Citation: Andrea L. Moore, Smruti P. Damania, Shandelle M. Henson, James L. Hayward. Modeling the daily activities of breeding colonial seabirds: Dynamic occupancy patterns in multiple habitat patches. Mathematical Biosciences & Engineering, 2008, 5 (4) : 831-842. doi: 10.3934/mbe.2008.5.831
[1]

Federica Di Michele, Bruno Rubino, Rosella Sampalmieri. A steady-state mathematical model for an EOS capacitor: The effect of the size exclusion. Networks & Heterogeneous Media, 2016, 11 (4) : 603-625. doi: 10.3934/nhm.2016011

[2]

Mei-hua Wei, Jianhua Wu, Yinnian He. Steady-state solutions and stability for a cubic autocatalysis model. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1147-1167. doi: 10.3934/cpaa.2015.14.1147

[3]

Yacine Chitour, Jean-Michel Coron, Mauro Garavello. On conditions that prevent steady-state controllability of certain linear partial differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 643-672. doi: 10.3934/dcds.2006.14.643

[4]

Ken Shirakawa. Stability for steady-state patterns in phase field dynamics associated with total variation energies. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1215-1236. doi: 10.3934/dcds.2006.15.1215

[5]

Tomoyuki Miyaji, Yoshio Tsutsumi. Steady-state mode interactions of radially symmetric modes for the Lugiato-Lefever equation on a disk. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1633-1650. doi: 10.3934/cpaa.2018078

[6]

Theodore Kolokolnikov, Michael J. Ward, Juncheng Wei. The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1373-1410. doi: 10.3934/dcdsb.2014.19.1373

[7]

Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045

[8]

Samir K. Bhowmik, Dugald B. Duncan, Michael Grinfeld, Gabriel J. Lord. Finite to infinite steady state solutions, bifurcations of an integro-differential equation. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 57-71. doi: 10.3934/dcdsb.2011.16.57

[9]

Orazio Muscato, Wolfgang Wagner, Vincenza Di Stefano. Properties of the steady state distribution of electrons in semiconductors. Kinetic & Related Models, 2011, 4 (3) : 809-829. doi: 10.3934/krm.2011.4.809

[10]

Wing-Cheong Lo. Morphogen gradient with expansion-repression mechanism: Steady-state and robustness studies. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 775-787. doi: 10.3934/dcdsb.2014.19.775

[11]

Zhenzhen Zheng, Ching-Shan Chou, Tau-Mu Yi, Qing Nie. Mathematical analysis of steady-state solutions in compartment and continuum models of cell polarization. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1135-1168. doi: 10.3934/mbe.2011.8.1135

[12]

Pierre Gabriel, Hugo Martin. Steady distribution of the incremental model for bacteria proliferation. Networks & Heterogeneous Media, 2019, 14 (1) : 149-171. doi: 10.3934/nhm.2019008

[13]

A. R. Humphries, O. A. DeMasi, F. M. G. Magpantay, F. Upham. Dynamics of a delay differential equation with multiple state-dependent delays. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2701-2727. doi: 10.3934/dcds.2012.32.2701

[14]

Peixuan Weng, Xiao-Qiang Zhao. Spatial dynamics of a nonlocal and delayed population model in a periodic habitat. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 343-366. doi: 10.3934/dcds.2011.29.343

[15]

Yueding Yuan, Yang Wang, Xingfu Zou. Spatial dynamics of a Lotka-Volterra model with a shifting habitat. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5633-5671. doi: 10.3934/dcdsb.2019076

[16]

Hsin-Yi Liu, Hsing Paul Luh. Kronecker product-forms of steady-state probabilities with $C_k$/$C_m$/$1$ by matrix polynomial approaches. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 691-711. doi: 10.3934/naco.2011.1.691

[17]

Shin-Yi Lee, Shin-Hwa Wang, Chiou-Ping Ye. Explicit necessary and sufficient conditions for the existence of a dead core solution of a p-laplacian steady-state reaction-diffusion problem. Conference Publications, 2005, 2005 (Special) : 587-596. doi: 10.3934/proc.2005.2005.587

[18]

Thomas Lepoutre, Salomé Martínez. Steady state analysis for a relaxed cross diffusion model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 613-633. doi: 10.3934/dcds.2014.34.613

[19]

Qi Wang. On the steady state of a shadow system to the SKT competition model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2941-2961. doi: 10.3934/dcdsb.2014.19.2941

[20]

Josef Diblík. Long-time behavior of positive solutions of a differential equation with state-dependent delay. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 31-46. doi: 10.3934/dcdss.2020002

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

[Back to Top]