2008, 5(4): 877-887. doi: 10.3934/mbe.2008.5.877

Food web dynamics in a seasonally varying wetland

1. 

U.S. Geological Survey and Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33143, United States

2. 

Florida International University, Miami, Florida 33133, United States

3. 

Everglades National Park, National Park Service, Homestead, Florida 33199, United States

Received  December 2007 Revised  May 2008 Published  October 2008

A spatially explicit model is developed to simulate the small fish community and its underlying food web, in the freshwater marshes of the Everglades. The community is simplified to a few small fish species feeding on periphyton and invertebrates. Other compartments are detritus, crayfish, and a piscivorous fish species. This unit food web model is applied to each of the 10,000 spatial cells on a 100 x 100 pixel landscape. Seasonal variation in water level is assumed and rules are assigned for fish movement in response to rising and falling water levels, which can cause many spatial cells to alternate between flooded and dry conditions. It is shown that temporal variations of water level on a spatially heterogeneous landscape can maintain at least three competing fish species. In addition, these environmental factors can strongly affect the temporal variation of the food web caused by top-down control from the piscivorous fish.
Citation: Donald L. DeAngelis, Joel C. Trexler, Douglas D. Donalson. Food web dynamics in a seasonally varying wetland. Mathematical Biosciences & Engineering, 2008, 5 (4) : 877-887. doi: 10.3934/mbe.2008.5.877
[1]

Diène Ngom, A. Iggidir, Aboudramane Guiro, Abderrahim Ouahbi. An observer for a nonlinear age-structured model of a harvested fish population. Mathematical Biosciences & Engineering, 2008, 5 (2) : 337-354. doi: 10.3934/mbe.2008.5.337

[2]

Rongsong Liu, Stephen A. Gourley. A model for the biocontrol of mosquitoes using predatory fish. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3283-3298. doi: 10.3934/dcdsb.2014.19.3283

[3]

Kjartan G. Magnússon, Sven Th. Sigurdsson, Petro Babak, Stefán F. Gudmundsson, Eva Hlín Dereksdóttir. A continuous density Kolmogorov type model for a migrating fish stock. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 695-704. doi: 10.3934/dcdsb.2004.4.695

[4]

Florian Rupp, Jürgen Scheurle. Analysis of a mathematical model for jellyfish blooms and the cambric fish invasion. Conference Publications, 2013, 2013 (special) : 663-672. doi: 10.3934/proc.2013.2013.663

[5]

Blaise Faugeras, Olivier Maury. An advection-diffusion-reaction size-structured fish population dynamics model combined with a statistical parameter estimation procedure: Application to the Indian Ocean skipjack tuna fishery. Mathematical Biosciences & Engineering, 2005, 2 (4) : 719-741. doi: 10.3934/mbe.2005.2.719

[6]

Yunfeng Jia, Jianhua Wu, Hong-Kun Xu. On qualitative analysis for a two competing fish species model with a combined non-selective harvesting effort in the presence of toxicity. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1927-1941. doi: 10.3934/cpaa.2013.12.1927

[7]

Sheree L. Arpin, J. M. Cushing. Modeling frequency-dependent selection with an application to cichlid fish. Mathematical Biosciences & Engineering, 2008, 5 (4) : 889-903. doi: 10.3934/mbe.2008.5.889

[8]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020042

[9]

Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1735-1757. doi: 10.3934/dcdsb.2015.20.1735

[10]

Ali Moussaoui, Pierre Auger, Christophe Lett. Optimal number of sites in multi-site fisheries with fish stock dependent migrations. Mathematical Biosciences & Engineering, 2011, 8 (3) : 769-783. doi: 10.3934/mbe.2011.8.769

[11]

Alfonso Ruiz-Herrera. Chaos in delay differential equations with applications in population dynamics. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1633-1644. doi: 10.3934/dcds.2013.33.1633

[12]

Dongxue Yan, Xianlong Fu. Asymptotic analysis of a spatially and size-structured population model with delayed birth process. Communications on Pure & Applied Analysis, 2016, 15 (2) : 637-655. doi: 10.3934/cpaa.2016.15.637

[13]

Timothy C. Reluga, Allison K. Shaw. Optimal migratory behavior in spatially-explicit seasonal environments. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3359-3378. doi: 10.3934/dcdsb.2014.19.3359

[14]

Maoan Han, Xiaoyan Hou, Lijuan Sheng, Chaoyang Wang. Theory of rotated equations and applications to a population model. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2171-2185. doi: 10.3934/dcds.2018089

[15]

Pierre Magal. Global stability for differential equations with homogeneous nonlinearity and application to population dynamics. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 541-560. doi: 10.3934/dcdsb.2002.2.541

[16]

Gang Huang, Yasuhiro Takeuchi, Rinko Miyazaki. Stability conditions for a class of delay differential equations in single species population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2451-2464. doi: 10.3934/dcdsb.2012.17.2451

[17]

Narcisa Apreutesei, Arnaud Ducrot, Vitaly Volpert. Travelling waves for integro-differential equations in population dynamics. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 541-561. doi: 10.3934/dcdsb.2009.11.541

[18]

Sze-Bi Hsu, Christopher A. Klausmeier, Chiu-Ju Lin. Analysis of a model of two parallel food chains. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 337-359. doi: 10.3934/dcdsb.2009.12.337

[19]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[20]

Andrei Korobeinikov, William T. Lee. Global asymptotic properties for a Leslie-Gower food chain model. Mathematical Biosciences & Engineering, 2009, 6 (3) : 585-590. doi: 10.3934/mbe.2009.6.585

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

[Back to Top]