
Previous Article
The dynamics of a simple LaissezFaire model with two predators
 MBE Home
 This Issue

Next Article
An in vivo intermediate filament assembly model
Modeling HIV outbreaks: The male to female prevalence ratio in the core population
1.  Department of Mathematics, Richard Stockton College of New Jersey, Pomona, NJ 08240, United States 
2.  Departments of Mathematics & Physics, University of Maryland, College Park, MD 20742, United States 
[1] 
Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2021001 
[2] 
Onur Şimşek, O. Erhun Kundakcioglu. Cost of fairness in agent scheduling for contact centers. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021001 
[3] 
Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rateindependent evolution of sets. Discrete & Continuous Dynamical Systems  S, 2021, 14 (1) : 89119. doi: 10.3934/dcdss.2020304 
[4] 
Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a threedimensional circadian oscillator model. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020349 
[5] 
SzeBi Hsu, Yu Jin. The dynamics of a two hosttwo virus system in a chemostat environment. Discrete & Continuous Dynamical Systems  B, 2021, 26 (1) : 415441. doi: 10.3934/dcdsb.2020298 
[6] 
Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems  B, 2021, 26 (1) : 667691. doi: 10.3934/dcdsb.2020084 
[7] 
Laurent Di Menza, Virginie JoanneFabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020464 
[8] 
Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems  A, 2020, 40 (6) : 38373855. doi: 10.3934/dcds.2020169 
[9] 
Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDPconvergence. Discrete & Continuous Dynamical Systems  S, 2021, 14 (1) : 395425. doi: 10.3934/dcdss.2020345 
[10] 
Tin Phan, Bruce Pell, Amy E. Kendig, Elizabeth T. Borer, Yang Kuang. Rich dynamics of a simple delay hostpathogen model of celltocell infection for plant virus. Discrete & Continuous Dynamical Systems  B, 2021, 26 (1) : 515539. doi: 10.3934/dcdsb.2020261 
[11] 
Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185204. doi: 10.3934/jimo.2019106 
[12] 
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear FisherKPP equation. Discrete & Continuous Dynamical Systems  S, 2021, 14 (2) : 695721. doi: 10.3934/dcdss.2020362 
[13] 
Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolichyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems  A, 2020, 40 (6) : 31173142. doi: 10.3934/dcds.2019226 
[14] 
Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020426 
[15] 
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems  A, 2020, 40 (6) : 34673484. doi: 10.3934/dcds.2020042 
[16] 
Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a twopatch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems  A, 2020, 40 (6) : 34113425. doi: 10.3934/dcds.2020031 
[17] 
Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure & Applied Analysis, 2021, 20 (2) : 755762. doi: 10.3934/cpaa.2020288 
[18] 
Dorothee Knees, Chiara Zanini. Existence of parameterized BVsolutions for rateindependent systems with discontinuous loads. Discrete & Continuous Dynamical Systems  S, 2021, 14 (1) : 121149. doi: 10.3934/dcdss.2020332 
[19] 
Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems  A, 2020, 40 (6) : 30753092. doi: 10.3934/dcds.2020035 
[20] 
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2021002 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]