
Previous Article
The dynamics of a simple LaissezFaire model with two predators
 MBE Home
 This Issue

Next Article
An in vivo intermediate filament assembly model
Modeling HIV outbreaks: The male to female prevalence ratio in the core population
1.  Department of Mathematics, Richard Stockton College of New Jersey, Pomona, NJ 08240, United States 
2.  Departments of Mathematics & Physics, University of Maryland, College Park, MD 20742, United States 
[1] 
Luis F. Gordillo, Stephen A. Marion, Priscilla E. Greenwood. The effect of patterns of infectiousness on epidemic size. Mathematical Biosciences & Engineering, 2008, 5 (3) : 429435. doi: 10.3934/mbe.2008.5.429 
[2] 
Bertrand Lods. Variational characterizations of the effective multiplication factor of a nuclear reactor core. Kinetic & Related Models, 2009, 2 (2) : 307331. doi: 10.3934/krm.2009.2.307 
[3] 
Chunlai Mu, Jun Zhou, Yuhuan Li. Fast rate of dead core for fast diffusion equation with strong absorption. Communications on Pure & Applied Analysis, 2010, 9 (2) : 397411. doi: 10.3934/cpaa.2010.9.397 
[4] 
Song Liang, Yuan Lou. On the dependence of population size upon random dispersal rate. Discrete & Continuous Dynamical Systems  B, 2012, 17 (8) : 27712788. doi: 10.3934/dcdsb.2012.17.2771 
[5] 
Cruz VargasDeLeón, Alberto d'Onofrio. Global stability of infectious disease models with contact rate as a function of prevalence index. Mathematical Biosciences & Engineering, 2017, 14 (4) : 10191033. doi: 10.3934/mbe.2017053 
[6] 
Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible NavierStokes equations. Communications on Pure & Applied Analysis, 2013, 12 (5) : 19071926. doi: 10.3934/cpaa.2013.12.1907 
[7] 
Marius Cocou. A dynamic viscoelastic problem with friction and ratedepending contact interactions. Evolution Equations & Control Theory, 2020, 9 (4) : 981993. doi: 10.3934/eect.2020060 
[8] 
Najat Ziyadi. A malefemale mathematical model of human papillomavirus (HPV) in African American population. Mathematical Biosciences & Engineering, 2017, 14 (1) : 339358. doi: 10.3934/mbe.2017022 
[9] 
Z. Jackiewicz, B. ZubikKowal, B. Basse. Finitedifference and pseudospectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Mathematical Biosciences & Engineering, 2009, 6 (3) : 561572. doi: 10.3934/mbe.2009.6.561 
[10] 
TzyWei Hwang, FengBin Wang. Dynamics of a dengue fever transmission model with crowding effect in human population and spatial variation. Discrete & Continuous Dynamical Systems  B, 2013, 18 (1) : 147161. doi: 10.3934/dcdsb.2013.18.147 
[11] 
Zhaohui Yuan, Xingfu Zou. Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays. Mathematical Biosciences & Engineering, 2013, 10 (2) : 483498. doi: 10.3934/mbe.2013.10.483 
[12] 
Suqi Ma, Qishao Lu, Shuli Mei. Dynamics of a logistic population model with maturation delay and nonlinear birth rate. Discrete & Continuous Dynamical Systems  B, 2005, 5 (3) : 735752. doi: 10.3934/dcdsb.2005.5.735 
[13] 
Kie Van Ivanky Saputra, Lennaert van Veen, Gilles Reinout Willem Quispel. The saddlenodetranscritical bifurcation in a population model with constant rate harvesting. Discrete & Continuous Dynamical Systems  B, 2010, 14 (1) : 233250. doi: 10.3934/dcdsb.2010.14.233 
[14] 
XunYang Wang, Khalid Hattaf, HaiFeng Huo, Hong Xiang. Stability analysis of a delayed social epidemics model with general contact rate and its optimal control. Journal of Industrial & Management Optimization, 2016, 12 (4) : 12671285. doi: 10.3934/jimo.2016.12.1267 
[15] 
Islam A. Moneim, David Greenhalgh. Use Of A Periodic Vaccination Strategy To Control The Spread Of Epidemics With Seasonally Varying Contact Rate. Mathematical Biosciences & Engineering, 2005, 2 (3) : 591611. doi: 10.3934/mbe.2005.2.591 
[16] 
Xing Liang, Lei Zhang. The optimal distribution of resources and rate of migration maximizing the population size in logistic model with identical migration. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020280 
[17] 
Caiping Liu, Heungwing Lee. Lagrange multiplier rules for approximate solutions in vector optimization. Journal of Industrial & Management Optimization, 2012, 8 (3) : 749764. doi: 10.3934/jimo.2012.8.749 
[18] 
Santanu Sarkar. Analysis of Hidden Number Problem with Hidden Multiplier. Advances in Mathematics of Communications, 2017, 11 (4) : 805811. doi: 10.3934/amc.2017059 
[19] 
Renato Soeiro, Abdelrahim Mousa, Tânia R. Oliveira, Alberto A. Pinto. Dynamics of human decisions. Journal of Dynamics & Games, 2014, 1 (1) : 121151. doi: 10.3934/jdg.2014.1.121 
[20] 
Marek Bodnar, Urszula Foryś. Time Delay In Necrotic Core Formation. Mathematical Biosciences & Engineering, 2005, 2 (3) : 461472. doi: 10.3934/mbe.2005.2.461 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]