
Previous Article
Dynamic effects and information quantifiers of statistical memory of MEG's signals at photosensitive epilepsy
 MBE Home
 This Issue

Next Article
The dynamics of a simple LaissezFaire model with two predators
Solution of the MichaelisMenten equation using the decomposition method
1.  Department of Radiological Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, United States 
2.  Cell Culture Development, Global Biologics Development, Bayer HealthCare, 800 Dwight Way, Berkeley, CA 94710, United States 
[1] 
Karl Peter Hadeler. MichaelisMenten kinetics, the operatorrepressor system, and least squares approaches. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 15411560. doi: 10.3934/mbe.2013.10.1541 
[2] 
Urszula Ledzewicz, Helen Moore. Optimal control applied to a generalized MichaelisMenten model of CML therapy. Discrete & Continuous Dynamical Systems  B, 2018, 23 (1) : 331346. doi: 10.3934/dcdsb.2018022 
[3] 
Maciej Leszczyński, Urszula Ledzewicz, Heinz Schättler. Optimal control for a mathematical model for antiangiogenic treatment with MichaelisMenten pharmacodynamics. Discrete & Continuous Dynamical Systems  B, 2019, 24 (5) : 23152334. doi: 10.3934/dcdsb.2019097 
[4] 
Ming Liu, Dongpo Hu, Fanwei Meng. Stability and bifurcation analysis in a delayinduced predatorprey model with MichaelisMenten type predator harvesting. Discrete & Continuous Dynamical Systems  S, 2018, 0 (0) : 00. doi: 10.3934/dcdss.2020259 
[5] 
Yangjin Kim, Khalid Boushaba. An enzyme kinetics model of tumor dormancy, regulation of secondary metastases. Discrete & Continuous Dynamical Systems  S, 2011, 4 (6) : 14651498. doi: 10.3934/dcdss.2011.4.1465 
[6] 
JengHuei Chen. An analysis of functional curability on HIV infection models with MichaelisMententype immune response and its generalization. Discrete & Continuous Dynamical Systems  B, 2017, 22 (6) : 20892120. doi: 10.3934/dcdsb.2017086 
[7] 
Xu Yang, François Golse, Zhongyi Huang, Shi Jin. Numerical study of a domain decomposition method for a twoscale linear transport equation. Networks & Heterogeneous Media, 2006, 1 (1) : 143166. doi: 10.3934/nhm.2006.1.143 
[8] 
SunHo Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible NavierStokes equation. Networks & Heterogeneous Media, 2013, 8 (2) : 465479. doi: 10.3934/nhm.2013.8.465 
[9] 
Shi Jin, Xu Yang, Guangwei Yuan. A domain decomposition method for a twoscale transport equation with energy flux conserved at the interface. Kinetic & Related Models, 2008, 1 (1) : 6584. doi: 10.3934/krm.2008.1.65 
[10] 
Dan Stanescu, Benito ChenCharpentier. Random coefficient differential equation models for Monod kinetics. Conference Publications, 2009, 2009 (Special) : 719728. doi: 10.3934/proc.2009.2009.719 
[11] 
Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291303. doi: 10.3934/ipi.2013.7.291 
[12] 
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonaldiffusion equation. Discrete & Continuous Dynamical Systems  S, 2016, 9 (1) : 109123. doi: 10.3934/dcdss.2016.9.109 
[13] 
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for lowrank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 2337. doi: 10.3934/bdia.2017006 
[14] 
Nobu Kishimoto. Resonant decomposition and the $I$method for the twodimensional Zakharov system. Discrete & Continuous Dynamical Systems  A, 2013, 33 (9) : 40954122. doi: 10.3934/dcds.2013.33.4095 
[15] 
Qingping Deng. A nonoverlapping domain decomposition method for nonconforming finite element problems. Communications on Pure & Applied Analysis, 2003, 2 (3) : 297310. doi: 10.3934/cpaa.2003.2.297 
[16] 
Jing Xu, XueCheng Tai, LiLian Wang. A twolevel domain decomposition method for image restoration. Inverse Problems & Imaging, 2010, 4 (3) : 523545. doi: 10.3934/ipi.2010.4.523 
[17] 
Ming Huang, Cong Cheng, Yang Li, Zun Quan Xia. The space decomposition method for the sum of nonlinear convex maximum eigenvalues and its applications. Journal of Industrial & Management Optimization, 2017, 13 (5) : 121. doi: 10.3934/jimo.2019034 
[18] 
Felipe Hernandez. A decomposition for the Schrödinger equation with applications to bilinear and multilinear estimates. Communications on Pure & Applied Analysis, 2018, 17 (2) : 627646. doi: 10.3934/cpaa.2018034 
[19] 
Xiaomao Deng, XiaoChuan Cai, Jun Zou. A parallel spacetime domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 10691091. doi: 10.3934/ipi.2015.9.1069 
[20] 
XiHong Yan. A new convergence proof of augmented Lagrangianbased method with full Jacobian decomposition for structured variational inequalities. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 4554. doi: 10.3934/naco.2016.6.45 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]