
Previous Article
Mathematical modelling of tuberculosis epidemics
 MBE Home
 This Issue

Next Article
The estimation of the effective reproductive number from disease outbreak data
The reproduction number $R_t$ in structured and nonstructured populations
1.  Statistical Sciences Group, Los Alamos National Laboratory, Los Alamos, NM 87545, United States 
2.  School of Human Evolution and Social Change, Arizona State University, Box 872402, Tempe, AZ 85287, United States 
[1] 
Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems  B, 2013, 18 (1) : 3756. doi: 10.3934/dcdsb.2013.18.37 
[2] 
Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595607. doi: 10.3934/mbe.2007.4.595 
[3] 
Ling Xue, Caterina Scoglio. Networklevel reproduction number and extinction threshold for vectorborne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565584. doi: 10.3934/mbe.2015.12.565 
[4] 
Gerardo Chowell, Catherine E. Ammon, Nicolas W. Hengartner, James M. Hyman. Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland. Mathematical Biosciences & Engineering, 2007, 4 (3) : 457470. doi: 10.3934/mbe.2007.4.457 
[5] 
Fred Brauer. A model for an SI disease in an age  structured population. Discrete & Continuous Dynamical Systems  B, 2002, 2 (2) : 257264. doi: 10.3934/dcdsb.2002.2.257 
[6] 
Rinaldo M. Colombo, Mauro Garavello. Stability and optimization in structured population models on graphs. Mathematical Biosciences & Engineering, 2015, 12 (2) : 311335. doi: 10.3934/mbe.2015.12.311 
[7] 
Jacek Banasiak, Wilson Lamb. Coagulation, fragmentation and growth processes in a size structured population. Discrete & Continuous Dynamical Systems  B, 2009, 11 (3) : 563585. doi: 10.3934/dcdsb.2009.11.563 
[8] 
G. Buffoni, S. Pasquali, G. Gilioli. A stochastic model for the dynamics of a stage structured population. Discrete & Continuous Dynamical Systems  B, 2004, 4 (3) : 517525. doi: 10.3934/dcdsb.2004.4.517 
[9] 
Ricardo Borges, Àngel Calsina, Sílvia Cuadrado. Equilibria of a cyclin structured cell population model. Discrete & Continuous Dynamical Systems  B, 2009, 11 (3) : 613627. doi: 10.3934/dcdsb.2009.11.613 
[10] 
Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 14551474. doi: 10.3934/mbe.2013.10.1455 
[11] 
Dongxue Yan, Xianlong Fu. Asymptotic behavior of a hierarchical sizestructured population model. Evolution Equations & Control Theory, 2018, 7 (2) : 293316. doi: 10.3934/eect.2018015 
[12] 
Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete & Continuous Dynamical Systems  B, 2015, 20 (6) : 17351757. doi: 10.3934/dcdsb.2015.20.1735 
[13] 
Xianlong Fu, Dongmei Zhu. Stability analysis for a sizestructured juvenileadult population model. Discrete & Continuous Dynamical Systems  B, 2014, 19 (2) : 391417. doi: 10.3934/dcdsb.2014.19.391 
[14] 
Bruno Buonomo, Deborah Lacitignola. On the stabilizing effect of cannibalism in stagestructured population models. Mathematical Biosciences & Engineering, 2006, 3 (4) : 717731. doi: 10.3934/mbe.2006.3.717 
[15] 
Jacques Henry. For which objective is birth process an optimal feedback in age structured population dynamics?. Discrete & Continuous Dynamical Systems  B, 2007, 8 (1) : 107114. doi: 10.3934/dcdsb.2007.8.107 
[16] 
L. M. Abia, O. Angulo, J.C. LópezMarcos. Sizestructured population dynamics models and their numerical solutions. Discrete & Continuous Dynamical Systems  B, 2004, 4 (4) : 12031222. doi: 10.3934/dcdsb.2004.4.1203 
[17] 
Gabriella Di Blasio, Alfredo Lorenzi. Direct and inverse problems in agestructured population diffusion. Discrete & Continuous Dynamical Systems  S, 2011, 4 (3) : 539563. doi: 10.3934/dcdss.2011.4.539 
[18] 
Xianlong Fu, Dongmei Zhu. Stability results for a sizestructured population model with delayed birth process. Discrete & Continuous Dynamical Systems  B, 2013, 18 (1) : 109131. doi: 10.3934/dcdsb.2013.18.109 
[19] 
Z.R. He, M.S. Wang, Z.E. Ma. Optimal birth control problems for nonlinear agestructured population dynamics. Discrete & Continuous Dynamical Systems  B, 2004, 4 (3) : 589594. doi: 10.3934/dcdsb.2004.4.589 
[20] 
Inom Mirzaev, David M. Bortz. A numerical framework for computing steady states of structured population models and their stability. Mathematical Biosciences & Engineering, 2017, 14 (4) : 933952. doi: 10.3934/mbe.2017049 
2017 Impact Factor: 1.23
Tools
Metrics
Other articles
by authors
[Back to Top]