• Previous Article
    Systemically modeling the dynamics of plasma insulin in subcutaneous injection of insulin analogues for type 1 diabetes
  • MBE Home
  • This Issue
  • Next Article
    Control entropy: A complexity measure for nonstationary signals
2009, 6(1): 27-40. doi: 10.3934/mbe.2009.6.27

A lumped model for blood flow and pressure in the systemic arteries based on an approximate velocity profile function


Department of Biomedical Engineering, Eindhoven University of Technology, University Hospital Maastricht, PO Box 5800, Maastricht, Netherlands, Netherlands


Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, Eindhoven, Netherlands

Received  May 2008 Revised  September 2008 Published  December 2008

Previously, by assuming a viscous dominated flow in the boundary layer and an inertia dominated flow in the vessel core, a velocity profile function for a 1D-wave propagation model was derived. Because the time dependent shape of the velocity profile in this boundary layer model depends on the size of the inviscid core and the boundary layer, and thus on the Womersley number, it differs along the arterial tree. In this study we evaluated a lumped model for a vessel segment in which the element configuration is based on physical phenomena described by the boundary layer model and for which all parameters have a physically based quantitative value dependent on the Womersley number. The proposed electrical analog consists of a Womersley number dependent resistor and an inductor arranged in parallel, representing the flow impedance in respectively the vessel core and the boundary layer, in series with a second resistor. After incorporating a capacitor representing the vessel compliance in this rigid tube model, the element configuration resembles the configuration of the four-element windkessel model. For arbitrary Womersley numbers the relative impedance of Womersley theory is approximated with high accuracy. In the limits for small and large Womersley numbers the relative impedances of the proposed lumped model correspond exactly to Womersley theory.
Citation: Wouter Huberts, E. Marielle H. Bosboom, Frans N. van de Vosse. A lumped model for blood flow and pressure in the systemic arteries based on an approximate velocity profile function. Mathematical Biosciences & Engineering, 2009, 6 (1) : 27-40. doi: 10.3934/mbe.2009.6.27

Panagiotes A. Voltairas, Antonios Charalambopoulos, Dimitrios I. Fotiadis, Lambros K. Michalis. A quasi-lumped model for the peripheral distortion of the arterial pulse. Mathematical Biosciences & Engineering, 2012, 9 (1) : 175-198. doi: 10.3934/mbe.2012.9.175


Harry L. Johnson, David Russell. Transfer function approach to output specification in certain linear distributed parameter systems. Conference Publications, 2003, 2003 (Special) : 449-458. doi: 10.3934/proc.2003.2003.449


Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks and Heterogeneous Media, 2021, 16 (2) : 187-219. doi: 10.3934/nhm.2021004


H. Thomas Banks, Shuhua Hu, Zackary R. Kenz, Carola Kruse, Simon Shaw, John Whiteman, Mark P. Brewin, Stephen E. Greenwald, Malcolm J. Birch. Model validation for a noninvasive arterial stenosis detection problem. Mathematical Biosciences & Engineering, 2014, 11 (3) : 427-448. doi: 10.3934/mbe.2014.11.427


Scott R. Pope, Laura M. Ellwein, Cheryl L. Zapata, Vera Novak, C. T. Kelley, Mette S. Olufsen. Estimation and identification of parameters in a lumped cerebrovascular model. Mathematical Biosciences & Engineering, 2009, 6 (1) : 93-115. doi: 10.3934/mbe.2009.6.93


Victor Fabian Morales-Delgado, José Francisco Gómez-Aguilar, Marco Antonio Taneco-Hernández. Mathematical modeling approach to the fractional Bergman's model. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 805-821. doi: 10.3934/dcdss.2020046


Guangyu Sui, Meng Fan, Irakli Loladze, Yang Kuang. The dynamics of a stoichiometric plant-herbivore model and its discrete analog. Mathematical Biosciences & Engineering, 2007, 4 (1) : 29-46. doi: 10.3934/mbe.2007.4.29


Valentin R. Koch, Yves Lucet. A note on: Spline technique for modeling roadway profile to minimize earthwork cost. Journal of Industrial and Management Optimization, 2010, 6 (2) : 393-400. doi: 10.3934/jimo.2010.6.393


Ahmad A. Moreb. Spline technique for modeling roadway profile to minimize earthwork cost. Journal of Industrial and Management Optimization, 2009, 5 (2) : 275-283. doi: 10.3934/jimo.2009.5.275


Kimmo Karhunen, Aku Seppänen, Jari P. Kaipio. Adaptive meshing approach to identification of cracks with electrical impedance tomography. Inverse Problems and Imaging, 2014, 8 (1) : 127-148. doi: 10.3934/ipi.2014.8.127


Yan Cui, Yanfei Wang. Velocity modeling based on Rayleigh wave dispersion curve and sparse optimization inversion. Inverse Problems and Imaging, 2021, 15 (5) : 1121-1134. doi: 10.3934/ipi.2021031


Hee-Dae Kwon, Jeehyun Lee, Myoungho Yoon. An age-structured model with immune response of HIV infection: Modeling and optimal control approach. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 153-172. doi: 10.3934/dcdsb.2014.19.153


Jan Poleszczuk, Marek Bodnar, Urszula Foryś. New approach to modeling of antiangiogenic treatment on the basis of Hahnfeldt et al. model. Mathematical Biosciences & Engineering, 2011, 8 (2) : 591-603. doi: 10.3934/mbe.2011.8.591


Hans Weinberger. The approximate controllability of a model for mutant selection. Evolution Equations and Control Theory, 2013, 2 (4) : 741-747. doi: 10.3934/eect.2013.2.741


Chengxia Lei, Yihong Du. Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 895-911. doi: 10.3934/dcdsb.2017045


Young-Pil Choi, Seok-Bae Yun. A BGK kinetic model with local velocity alignment forces. Networks and Heterogeneous Media, 2020, 15 (3) : 389-404. doi: 10.3934/nhm.2020024


Takeshi Fukao, Nobuyuki Kenmochi. A thermohydraulics model with temperature dependent constraint on velocity fields. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 17-34. doi: 10.3934/dcdss.2014.7.17


Azmy S. Ackleh, Jeremy J. Thibodeaux. Parameter estimation in a structured erythropoiesis model. Mathematical Biosciences & Engineering, 2008, 5 (4) : 601-616. doi: 10.3934/mbe.2008.5.601


Pavel Krejčí, Giselle A. Monteiro. Inverse parameter-dependent Preisach operator in thermo-piezoelectricity modeling. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3051-3066. doi: 10.3934/dcdsb.2018299


Óscar Vega-Amaya, Joaquín López-Borbón. A perturbation approach to a class of discounted approximate value iteration algorithms with borel spaces. Journal of Dynamics and Games, 2016, 3 (3) : 261-278. doi: 10.3934/jdg.2016014

2018 Impact Factor: 1.313


  • PDF downloads (87)
  • HTML views (0)
  • Cited by (14)

[Back to Top]