
Previous Article
Culling structured hosts to eradicate vectorborne diseases
 MBE Home
 This Issue

Next Article
The estimation of the effective reproductive number from disease outbreak data
The dynamics of a delay model of hepatitis B virus infection with logistic hepatocyte growth
1.  Department of Mathematics and Statistics, Arizona State University, Tempe, AZ 85287, United States, United States 
2.  Department of Biology, Scottsdale Community College, Scottsdale, AZ 85256, United States 
3.  Department of Math & Statistics, College of Liberal Arts and Sciences, Arizona State University, Tempe, AZ 85287  1804 
[1] 
Suxia Zhang, Xiaxia Xu. A mathematical model for hepatitis B with infectionage structure. Discrete & Continuous Dynamical Systems  B, 2016, 21 (4) : 13291346. doi: 10.3934/dcdsb.2016.21.1329 
[2] 
BaoZhu Guo, LiMing Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689694. doi: 10.3934/mbe.2011.8.689 
[3] 
Avner Friedman, Wenrui Hao. Mathematical modeling of liver fibrosis. Mathematical Biosciences & Engineering, 2017, 14 (1) : 143164. doi: 10.3934/mbe.2017010 
[4] 
Suxia Zhang, Hongbin Guo, Robert Smith?. Dynamical analysis for a hepatitis B transmission model with immigration and infection age. Mathematical Biosciences & Engineering, 2018, 15 (6) : 12911313. doi: 10.3934/mbe.2018060 
[5] 
Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Taza Gul, Fawad Hussain. A fractional order HBV model with hospitalization. Discrete & Continuous Dynamical Systems  S, 2018, 0 (0) : 957974. doi: 10.3934/dcdss.2020056 
[6] 
Elamin H. Elbasha. Model for hepatitis C virus transmissions. Mathematical Biosciences & Engineering, 2013, 10 (4) : 10451065. doi: 10.3934/mbe.2013.10.1045 
[7] 
Meihong Qiao, Anping Liu, Qing Tang. The dynamics of an HBV epidemic model on complex heterogeneous networks. Discrete & Continuous Dynamical Systems  B, 2015, 20 (5) : 13931404. doi: 10.3934/dcdsb.2015.20.1393 
[8] 
Ting Guo, Haihong Liu, Chenglin Xu, Fang Yan. Global stability of a diffusive and delayed HBV infection model with HBV DNAcontaining capsids and general incidence rate. Discrete & Continuous Dynamical Systems  B, 2018, 23 (10) : 42234242. doi: 10.3934/dcdsb.2018134 
[9] 
Junyoung Jang, Kihoon Jang, HeeDae Kwon, Jeehyun Lee. Feedback control of an HBV model based on ensemble kalman filter and differential evolution. Mathematical Biosciences & Engineering, 2018, 15 (3) : 667691. doi: 10.3934/mbe.2018030 
[10] 
Xichao Duan, Sanling Yuan, Kaifa Wang. Dynamics of a diffusive agestructured HBV model with saturating incidence. Mathematical Biosciences & Engineering, 2016, 13 (5) : 935968. doi: 10.3934/mbe.2016024 
[11] 
Gregory Zitelli, Seddik M. Djouadi, Judy D. Day. Combining robust state estimation with nonlinear model predictive control to regulate the acute inflammatory response to pathogen. Mathematical Biosciences & Engineering, 2015, 12 (5) : 11271139. doi: 10.3934/mbe.2015.12.1127 
[12] 
Mostafa Karimi, Noor Akma Ibrahim, Mohd Rizam Abu Bakar, Jayanthi Arasan. Rankbased inference for the accelerated failure time model in the presence of interval censored data. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 107112. doi: 10.3934/naco.2017007 
[13] 
Samitha Samaranayake, Axel Parmentier, Ethan Xuan, Alexandre Bayen. A mathematical framework for delay analysis in single source networks. Networks & Heterogeneous Media, 2017, 12 (1) : 113145. doi: 10.3934/nhm.2017005 
[14] 
Avner Friedman, Chuan Xue. A mathematical model for chronic wounds. Mathematical Biosciences & Engineering, 2011, 8 (2) : 253261. doi: 10.3934/mbe.2011.8.253 
[15] 
José Ignacio Tello. Mathematical analysis of a model of morphogenesis. Discrete & Continuous Dynamical Systems  A, 2009, 25 (1) : 343361. doi: 10.3934/dcds.2009.25.343 
[16] 
Seema Nanda, Lisette dePillis, Ami Radunskaya. B cell chronic lymphocytic leukemia  A model with immune response. Discrete & Continuous Dynamical Systems  B, 2013, 18 (4) : 10531076. doi: 10.3934/dcdsb.2013.18.1053 
[17] 
Chengzhi Li, Jianquan Li, Zhien Ma. Codimension 3 BT bifurcations in an epidemic model with a nonlinear incidence. Discrete & Continuous Dynamical Systems  B, 2015, 20 (4) : 11071116. doi: 10.3934/dcdsb.2015.20.1107 
[18] 
Ata Allah Taleizadeh, Biswajit Sarkar, Mohammad Hasani. Delayed payment policy in multiproduct singlemachine economic production quantity model with repair failure and partial backordering. Journal of Industrial & Management Optimization, 2017, 13 (5) : 124. doi: 10.3934/jimo.2019002 
[19] 
Matthias Ngwa, Ephraim Agyingi. A mathematical model of the compression of a spinal disc. Mathematical Biosciences & Engineering, 2011, 8 (4) : 10611083. doi: 10.3934/mbe.2011.8.1061 
[20] 
Kimberly Fessel, Jeffrey B. Gaither, Julie K. Bower, Trudy Gaillard, Kwame Osei, Grzegorz A. Rempała. Mathematical analysis of a model for glucose regulation. Mathematical Biosciences & Engineering, 2016, 13 (1) : 8399. doi: 10.3934/mbe.2016.13.83 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]