
Previous Article
Examination of a simple model of condom usage and individual withdrawal for the HIV epidemic
 MBE Home
 This Issue

Next Article
Epidemic models with differential susceptibility and staged progression and their dynamics
Mathematical analysis of a model for HIVmalaria coinfection
1.  Department of Applied Mathematics, National University of Science and Technology, Box AC 939 Ascot, Bulawayo, Zimbabwe 
2.  Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada 
3.  Department of Mathematics and Applied Mathematics, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa 
4.  Mathematics Department, University of Dar es Salaam, P.O.Box 35062, Dar es Salaam, Tanzania 
[1] 
A. M. Elaiw, N. H. AlShamrani. Global stability of HIV/HTLV coinfection model with CTLmediated immunity. Discrete and Continuous Dynamical Systems  B, 2022, 27 (3) : 17251764. doi: 10.3934/dcdsb.2021108 
[2] 
Georgi Kapitanov. A double agestructured model of the coinfection of tuberculosis and HIV. Mathematical Biosciences & Engineering, 2015, 12 (1) : 2340. doi: 10.3934/mbe.2015.12.23 
[3] 
Kazeem Oare Okosun, Robert Smith?. Optimal control analysis of malariaschistosomiasis coinfection dynamics. Mathematical Biosciences & Engineering, 2017, 14 (2) : 377405. doi: 10.3934/mbe.2017024 
[4] 
ZhongKai Guo, HaiFeng Huo, Hong Xiang. Analysis of an agestructured model for HIVTB coinfection. Discrete and Continuous Dynamical Systems  B, 2022, 27 (1) : 199228. doi: 10.3934/dcdsb.2021037 
[5] 
Salihu Sabiu Musa, Nafiu Hussaini, Shi Zhao, He Daihai. Dynamical analysis of chikungunya and dengue coinfection model. Discrete and Continuous Dynamical Systems  B, 2020, 25 (5) : 19071933. doi: 10.3934/dcdsb.2020009 
[6] 
Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595607. doi: 10.3934/mbe.2007.4.595 
[7] 
Yijun Lou, Li Liu, Daozhou Gao. Modeling coinfection of Ixodes tickborne pathogens. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 13011316. doi: 10.3934/mbe.2017067 
[8] 
Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete and Continuous Dynamical Systems  B, 2013, 18 (1) : 3756. doi: 10.3934/dcdsb.2013.18.37 
[9] 
Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete and Continuous Dynamical Systems  B, 2017, 22 (6) : 23652387. doi: 10.3934/dcdsb.2017121 
[10] 
Xiaotian Wu, Daozhou Gao, Zilong Song, Jianhong Wu. Modelling Trypanosoma cruziTrypanosoma rangeli coinfection and pathogenic effect on Chagas disease spread. Discrete and Continuous Dynamical Systems  B, 2022 doi: 10.3934/dcdsb.2022110 
[11] 
Nitu Kumari, Sumit Kumar, Sandeep Sharma, Fateh Singh, Rana Parshad. Basic reproduction number estimation and forecasting of COVID19: A case study of India, Brazil and Peru. Communications on Pure and Applied Analysis, , () : . doi: 10.3934/cpaa.2021170 
[12] 
Yu Ji. Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 525536. doi: 10.3934/mbe.2015.12.525 
[13] 
Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 14551474. doi: 10.3934/mbe.2013.10.1455 
[14] 
Jinliang Wang, Lijuan Guan. Global stability for a HIV1 infection model with cellmediated immune response and intracellular delay. Discrete and Continuous Dynamical Systems  B, 2012, 17 (1) : 297302. doi: 10.3934/dcdsb.2012.17.297 
[15] 
A. M. Elaiw, N. H. AlShamrani, A. AbdelAty, H. Dutta. Stability analysis of a general HIV dynamics model with multistages of infected cells and two routes of infection. Discrete and Continuous Dynamical Systems  S, 2021, 14 (10) : 35413556. doi: 10.3934/dcdss.2020441 
[16] 
Tianhui Yang, Ammar Qarariyah, Qigui Yang. The effect of spatial variables on the basic reproduction ratio for a reactiondiffusion epidemic model. Discrete and Continuous Dynamical Systems  B, 2022, 27 (6) : 30053017. doi: 10.3934/dcdsb.2021170 
[17] 
Jinliang Wang, Jingmei Pang, Toshikazu Kuniya. A note on global stability for malaria infections model with latencies. Mathematical Biosciences & Engineering, 2014, 11 (4) : 9951001. doi: 10.3934/mbe.2014.11.995 
[18] 
Jinliang Wang, Xiu Dong. Analysis of an HIV infection model incorporating latency age and infection age. Mathematical Biosciences & Engineering, 2018, 15 (3) : 569594. doi: 10.3934/mbe.2018026 
[19] 
Expeditho Mtisi, Herieth Rwezaura, Jean Michel Tchuenche. A mathematical analysis of malaria and tuberculosis codynamics. Discrete and Continuous Dynamical Systems  B, 2009, 12 (4) : 827864. doi: 10.3934/dcdsb.2009.12.827 
[20] 
Gabriela Marinoschi. Identification of transmission rates and reproduction number in a SARSCoV2 epidemic model. Discrete and Continuous Dynamical Systems  S, 2022 doi: 10.3934/dcdss.2022128 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]