# American Institute of Mathematical Sciences

• Previous Article
On the eradicability of infections with partially protective vaccination in models with backward bifurcation
• MBE Home
• This Issue
• Next Article
Examination of a simple model of condom usage and individual withdrawal for the HIV epidemic
2009, 6(2): 377-393. doi: 10.3934/mbe.2009.6.377

## The discounted reproductive number for epidemiology

 1 Department of Mathematics, Pennsylvania State University, State College, PA 16802, United States 2 Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT 06520, United States, United States

Received  September 2008 Revised  November 2008 Published  March 2009

The basic reproductive number, $\Ro$, and the effective reproductive number, $R$, are commonly used in mathematical epidemiology as summary statistics for the size and controllability of epidemics. However, these commonly used reproductive numbers can be misleading when applied to predict pathogen evolution because they do not incorporate the impact of the timing of events in the life-history cycle of the pathogen. To study evolution problems where the host population size is changing, measures like the ultimate proliferation rate must be used. A third measure of reproductive success, which combines properties of both the basic reproductive number and the ultimate proliferation rate, is the discounted reproductive number $\mathcal{R}_d$. The discounted reproductive number is a measure of reproductive success that is an individual's expected lifetime offspring production discounted by the background population growth rate. Here, we draw attention to the discounted reproductive number by providing an explicit definition and a systematic application framework. We describe how the discounted reproductive number overcomes the limitations of both the standard reproductive numbers and proliferation rates, and show that $\mathcal{R}_d$ is closely connected to Fisher's reproductive values for different life-history stages.
Citation: Timothy C. Reluga, Jan Medlock, Alison Galvani. The discounted reproductive number for epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (2) : 377-393. doi: 10.3934/mbe.2009.6.377
 [1] Ariel Cintrón-Arias, Carlos Castillo-Chávez, Luís M. A. Bettencourt, Alun L. Lloyd, H. T. Banks. The estimation of the effective reproductive number from disease outbreak data. Mathematical Biosciences & Engineering, 2009, 6 (2) : 261-282. doi: 10.3934/mbe.2009.6.261 [2] Eduardo Espinosa-Avila, Pablo Padilla Longoria, Francisco Hernández-Quiroz. Game theory and dynamic programming in alternate games. Journal of Dynamics and Games, 2017, 4 (3) : 205-216. doi: 10.3934/jdg.2017013 [3] Astridh Boccabella, Roberto Natalini, Lorenzo Pareschi. On a continuous mixed strategies model for evolutionary game theory. Kinetic and Related Models, 2011, 4 (1) : 187-213. doi: 10.3934/krm.2011.4.187 [4] Anna Lisa Amadori, Astridh Boccabella, Roberto Natalini. A hyperbolic model of spatial evolutionary game theory. Communications on Pure and Applied Analysis, 2012, 11 (3) : 981-1002. doi: 10.3934/cpaa.2012.11.981 [5] Hilla Behar, Alexandra Agranovich, Yoram Louzoun. Diffusion rate determines balance between extinction and proliferation in birth-death processes. Mathematical Biosciences & Engineering, 2013, 10 (3) : 523-550. doi: 10.3934/mbe.2013.10.523 [6] Michael Hochman. Lectures on dynamics, fractal geometry, and metric number theory. Journal of Modern Dynamics, 2014, 8 (3&4) : 437-497. doi: 10.3934/jmd.2014.8.437 [7] E. Muñoz Garcia, R. Pérez-Marco. Diophantine conditions in small divisors and transcendental number theory. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1401-1409. doi: 10.3934/dcds.2003.9.1401 [8] Marianne Akian, Stéphane Gaubert, Antoine Hochart. A game theory approach to the existence and uniqueness of nonlinear Perron-Frobenius eigenvectors. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 207-231. doi: 10.3934/dcds.2020009 [9] Serap Ergün, Bariş Bülent Kırlar, Sırma Zeynep Alparslan Gök, Gerhard-Wilhelm Weber. An application of crypto cloud computing in social networks by cooperative game theory. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1927-1941. doi: 10.3934/jimo.2019036 [10] Tinggui Chen, Yanhui Jiang. Research on operating mechanism for creative products supply chain based on game theory. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1103-1112. doi: 10.3934/dcdss.2015.8.1103 [11] Amina-Aicha Khennaoui, A. Othman Almatroud, Adel Ouannas, M. Mossa Al-sawalha, Giuseppe Grassi, Viet-Thanh Pham. The effect of caputo fractional difference operator on a novel game theory model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4549-4565. doi: 10.3934/dcdsb.2020302 [12] Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic and Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051 [13] Yadong Shu, Ying Dai, Zujun Ma. Evolutionary game theory analysis of supply chain with fairness concerns of retailers. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022098 [14] Ross Cressman, Vlastimil Křivan. Using chemical reaction network theory to show stability of distributional dynamics in game theory. Journal of Dynamics and Games, 2021  doi: 10.3934/jdg.2021030 [15] Vadim Yu. Kaloshin and Brian R. Hunt. A stretched exponential bound on the rate of growth of the number of periodic points for prevalent diffeomorphisms II. Electronic Research Announcements, 2001, 7: 28-36. [16] Vadim Yu. Kaloshin and Brian R. Hunt. A stretched exponential bound on the rate of growth of the number of periodic points for prevalent diffeomorphisms I. Electronic Research Announcements, 2001, 7: 17-27. [17] Eunha Shim, Beth Kochin, Alison Galvani. Insights from epidemiological game theory into gender-specific vaccination against rubella. Mathematical Biosciences & Engineering, 2009, 6 (4) : 839-854. doi: 10.3934/mbe.2009.6.839 [18] Hideo Deguchi. A reaction-diffusion system arising in game theory: existence of solutions and spatial dominance. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3891-3901. doi: 10.3934/dcdsb.2017200 [19] King-Yeung Lam. Dirac-concentrations in an integro-pde model from evolutionary game theory. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 737-754. doi: 10.3934/dcdsb.2018205 [20] Wai-Ki Ching, Sin-Man Choi, Min Huang. Optimal service capacity in a multiple-server queueing system: A game theory approach. Journal of Industrial and Management Optimization, 2010, 6 (1) : 73-102. doi: 10.3934/jimo.2010.6.73

2018 Impact Factor: 1.313