2009, 6(3): 561-572. doi: 10.3934/mbe.2009.6.561

Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics

1. 

Department of Mathematics and Statistics, Arizona State University, Tempe, Arizona 85287, United States

2. 

Department of Mathematics, Boise State University, 1910 University Drive, Boise, Idaho 83725, United States

3. 

Department of Mathematics and Statistics, University of Canterbury, Private Bag 4800, New Zealand

Received  January 2008 Revised  February 2009 Published  June 2009

Pseudo-spectral approximations are constructed for the model equations describing the population kinetics of human tumor cells in vitro and their responses to radiotherapy or chemotherapy. These approximations are more efficient than finite-difference approximations. The spectral accuracy of the pseudo-spectral method allows us to resolve the model with a much smaller number of spatial grid-points than required for the finite-difference method to achieve comparable accuracy. This is demonstrated by numerical experiments which show a good agreement between predicted and experimental data.
Citation: Z. Jackiewicz, B. Zubik-Kowal, B. Basse. Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Mathematical Biosciences & Engineering, 2009, 6 (3) : 561-572. doi: 10.3934/mbe.2009.6.561
[1]

J. Ignacio Tello. On a mathematical model of tumor growth based on cancer stem cells. Mathematical Biosciences & Engineering, 2013, 10 (1) : 263-278. doi: 10.3934/mbe.2013.10.263

[2]

Alexander S. Bratus, Svetlana Yu. Kovalenko, Elena Fimmel. On viable therapy strategy for a mathematical spatial cancer model describing the dynamics of malignant and healthy cells. Mathematical Biosciences & Engineering, 2015, 12 (1) : 163-183. doi: 10.3934/mbe.2015.12.163

[3]

Evans K. Afenya, Calixto P. Calderón. Growth kinetics of cancer cells prior to detection and treatment: An alternative view. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 25-28. doi: 10.3934/dcdsb.2004.4.25

[4]

Elena Izquierdo-Kulich, Margarita Amigó de Quesada, Carlos Manuel Pérez-Amor, Magda Lopes Texeira, José Manuel Nieto-Villar. The dynamics of tumor growth and cells pattern morphology. Mathematical Biosciences & Engineering, 2009, 6 (3) : 547-559. doi: 10.3934/mbe.2009.6.547

[5]

Najat Ziyadi. A male-female mathematical model of human papillomavirus (HPV) in African American population. Mathematical Biosciences & Engineering, 2017, 14 (1) : 339-358. doi: 10.3934/mbe.2017022

[6]

Tzy-Wei Hwang, Feng-Bin Wang. Dynamics of a dengue fever transmission model with crowding effect in human population and spatial variation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 147-161. doi: 10.3934/dcdsb.2013.18.147

[7]

Yueping Dong, Rinko Miyazaki, Yasuhiro Takeuchi. Mathematical modeling on helper T cells in a tumor immune system. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 55-72. doi: 10.3934/dcdsb.2014.19.55

[8]

Chengjun Guo, Chengxian Guo, Sameed Ahmed, Xinfeng Liu. Moment stability for nonlinear stochastic growth kinetics of breast cancer stem cells with time-delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2473-2489. doi: 10.3934/dcdsb.2016056

[9]

Frédérique Billy, Jean Clairambault, Franck Delaunay, Céline Feillet, Natalia Robert. Age-structured cell population model to study the influence of growth factors on cell cycle dynamics. Mathematical Biosciences & Engineering, 2013, 10 (1) : 1-17. doi: 10.3934/mbe.2013.10.1

[10]

Renato Soeiro, Abdelrahim Mousa, Tânia R. Oliveira, Alberto A. Pinto. Dynamics of human decisions. Journal of Dynamics and Games, 2014, 1 (1) : 121-151. doi: 10.3934/jdg.2014.1.121

[11]

Jiying Ma, Dongmei Xiao. Nonlinear dynamics of a mathematical model on action potential duration and calcium transient in paced cardiac cells. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2377-2396. doi: 10.3934/dcdsb.2013.18.2377

[12]

Marcello Delitala, Tommaso Lorenzi. Emergence of spatial patterns in a mathematical model for the co-culture dynamics of epithelial-like and mesenchymal-like cells. Mathematical Biosciences & Engineering, 2017, 14 (1) : 79-93. doi: 10.3934/mbe.2017006

[13]

A. K. Misra, Gauri Agrawal, Kusum Lata. Modeling the influence of human population and human population augmented pollution on rainfall. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 2979-3003. doi: 10.3934/dcdsb.2021169

[14]

Yu-Hsien Chang, Guo-Chin Jau. The behavior of the solution for a mathematical model for analysis of the cell cycle. Communications on Pure and Applied Analysis, 2006, 5 (4) : 779-792. doi: 10.3934/cpaa.2006.5.779

[15]

Robert P. Gilbert, Philippe Guyenne, Ying Liu. Modeling of the kinetics of vitamin D$_3$ in osteoblastic cells. Mathematical Biosciences & Engineering, 2013, 10 (2) : 319-344. doi: 10.3934/mbe.2013.10.319

[16]

Diego Samuel Rodrigues, Paulo Fernando de Arruda Mancera. Mathematical analysis and simulations involving chemotherapy and surgery on large human tumours under a suitable cell-kill functional response. Mathematical Biosciences & Engineering, 2013, 10 (1) : 221-234. doi: 10.3934/mbe.2013.10.221

[17]

D. Criaco, M. Dolfin, L. Restuccia. Approximate smooth solutions of a mathematical model for the activation and clonal expansion of T cells. Mathematical Biosciences & Engineering, 2013, 10 (1) : 59-73. doi: 10.3934/mbe.2013.10.59

[18]

Alan D. Rendall. Multiple steady states in a mathematical model for interactions between T cells and macrophages. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 769-782. doi: 10.3934/dcdsb.2013.18.769

[19]

Avner Friedman, Yangjin Kim. Tumor cells proliferation and migration under the influence of their microenvironment. Mathematical Biosciences & Engineering, 2011, 8 (2) : 371-383. doi: 10.3934/mbe.2011.8.371

[20]

Meng Liu, Yuxiang Li. Global generalized solutions of a haptotaxis model describing cancer cells invasion and metastatic spread. Communications on Pure and Applied Analysis, 2022, 21 (3) : 927-942. doi: 10.3934/cpaa.2022004

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]