• Previous Article
    Global asymptotic properties for a Leslie-Gower food chain model
  • MBE Home
  • This Issue
  • Next Article
    Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics
2009, 6(3): 573-583. doi: 10.3934/mbe.2009.6.573

On the global dynamics of a model for tumor immunotherapy

1. 

Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, MI 48109-0620, United States

2. 

Unité de mathématiques pures et appliquées, Ecole Normale Supérieure de Lyon, Lyon, F-69364 LYON Cedex 07, France

Received  January 2009 Revised  March 2009 Published  June 2009

Understanding the dynamics of human hosts and tumors is of critical importance. A mathematical model was developed that explored the immune response to tumors that was used to study a special type of treatment [3]. This treatment approach uses elements of the host to boost its immune response in the hopes that the host can clear the tumor. This model was extensively studied using numerical simulation, however no global analytical results were originally presented. In this work we explore the global dynamics to show under what conditions tumor clearance can be achieved.
Citation: Denise E. Kirschner, Alexei Tsygvintsev. On the global dynamics of a model for tumor immunotherapy. Mathematical Biosciences & Engineering, 2009, 6 (3) : 573-583. doi: 10.3934/mbe.2009.6.573
[1]

Denis de Carvalho Braga, Luis Fernando Mello, Carmen Rocşoreanu, Mihaela Sterpu. Lyapunov coefficients for non-symmetrically coupled identical dynamical systems. Application to coupled advertising models. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 785-803. doi: 10.3934/dcdsb.2009.11.785

[2]

Michael Schönlein. Asymptotic stability and smooth Lyapunov functions for a class of abstract dynamical systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4053-4069. doi: 10.3934/dcds.2017172

[3]

K. E. Starkov, Svetlana Bunimovich-Mendrazitsky. Dynamical properties and tumor clearance conditions for a nine-dimensional model of bladder cancer immunotherapy. Mathematical Biosciences & Engineering, 2016, 13 (5) : 1059-1075. doi: 10.3934/mbe.2016030

[4]

Gunther Dirr, Hiroshi Ito, Anders Rantzer, Björn S. Rüffer. Separable Lyapunov functions for monotone systems: Constructions and limitations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2497-2526. doi: 10.3934/dcdsb.2015.20.2497

[5]

Jóhann Björnsson, Peter Giesl, Sigurdur F. Hafstein, Christopher M. Kellett. Computation of Lyapunov functions for systems with multiple local attractors. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4019-4039. doi: 10.3934/dcds.2015.35.4019

[6]

Paul L. Salceanu, H. L. Smith. Lyapunov exponents and persistence in discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 187-203. doi: 10.3934/dcdsb.2009.12.187

[7]

Hsiu-Chuan Wei. Mathematical and numerical analysis of a mathematical model of mixed immunotherapy and chemotherapy of cancer. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1279-1295. doi: 10.3934/dcdsb.2016.21.1279

[8]

Sigurdur F. Hafstein, Christopher M. Kellett, Huijuan Li. Computing continuous and piecewise affine lyapunov functions for nonlinear systems. Journal of Computational Dynamics, 2015, 2 (2) : 227-246. doi: 10.3934/jcd.2015004

[9]

Paul L. Salceanu. Robust uniform persistence in discrete and continuous dynamical systems using Lyapunov exponents. Mathematical Biosciences & Engineering, 2011, 8 (3) : 807-825. doi: 10.3934/mbe.2011.8.807

[10]

Doan Thai Son. On analyticity for Lyapunov exponents of generic bounded linear random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3113-3126. doi: 10.3934/dcdsb.2017166

[11]

Peter Giesl, Sigurdur Hafstein. Computational methods for Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : i-ii. doi: 10.3934/dcdsb.2015.20.8i

[12]

João Ferreira Alves, Michal Málek. Zeta functions and topological entropy of periodic nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 465-482. doi: 10.3934/dcds.2013.33.465

[13]

Felipe García-Ramos, Brian Marcus. Mean sensitive, mean equicontinuous and almost periodic functions for dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 729-746. doi: 10.3934/dcds.2019030

[14]

P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1

[15]

Huijuan Li, Junxia Wang. Input-to-state stability of continuous-time systems via finite-time Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019192

[16]

Luis Barreira, Claudia Valls. Stability of nonautonomous equations and Lyapunov functions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2631-2650. doi: 10.3934/dcds.2013.33.2631

[17]

Peter Giesl, Sigurdur Hafstein. Review on computational methods for Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2291-2331. doi: 10.3934/dcdsb.2015.20.2291

[18]

Sergey Zelik. On the Lyapunov dimension of cascade systems. Communications on Pure & Applied Analysis, 2008, 7 (4) : 971-985. doi: 10.3934/cpaa.2008.7.971

[19]

Ezzeddine Zahrouni. On the Lyapunov functions for the solutions of the generalized Burgers equation. Communications on Pure & Applied Analysis, 2003, 2 (3) : 391-410. doi: 10.3934/cpaa.2003.2.391

[20]

C. Connell Mccluskey. Lyapunov functions for tuberculosis models with fast and slow progression. Mathematical Biosciences & Engineering, 2006, 3 (4) : 603-614. doi: 10.3934/mbe.2006.3.603

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]