 Previous Article
 MBE Home
 This Issue

Next Article
A model for transmission of partial resistance to antimalarial drugs
New developments in using stochastic recipe for multicompartment model: Intercompartment traveling route, residence time, and exponential convolution expansion
1.  School of Pharmacy and Department of Statistics, The Ohio State University, 500 12th West Avenue, Columbus, OH 43210, United States 
[1] 
Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems  S, 2020, 13 (3) : 709722. doi: 10.3934/dcdss.2020039 
[2] 
Chihiro Matsuoka, Koichi Hiraide. Special functions created by BorelLaplace transform of Hénon map. Electronic Research Announcements, 2011, 18: 111. doi: 10.3934/era.2011.18.1 
[3] 
Amir Khan, Asaf Khan, Tahir Khan, Gul Zaman. Extension of triple Laplace transform for solving fractional differential equations. Discrete & Continuous Dynamical Systems  S, 2020, 13 (3) : 755768. doi: 10.3934/dcdss.2020042 
[4] 
Alessandro Ciallella, Emilio N. M. Cirillo. Linear Boltzmann dynamics in a strip with large reflective obstacles: Stationary state and residence time. Kinetic & Related Models, 2018, 11 (6) : 14751501. doi: 10.3934/krm.2018058 
[5] 
Sebastià Galmés. Markovian characterization of node lifetime in a timedriven wireless sensor network. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 763780. doi: 10.3934/naco.2011.1.763 
[6] 
Tak Kuen Siu, Yang Shen. Riskminimizing pricing and Esscher transform in a general nonMarkovian regimeswitching jumpdiffusion model. Discrete & Continuous Dynamical Systems  B, 2017, 22 (7) : 25952626. doi: 10.3934/dcdsb.2017100 
[7] 
Da Xu. Numerical solutions of viscoelastic bending wave equations with two term time kernels by RungeKutta convolution quadrature. Discrete & Continuous Dynamical Systems  B, 2017, 22 (6) : 23892416. doi: 10.3934/dcdsb.2017122 
[8] 
Ali Gholami, Mauricio D. Sacchi. Timeinvariant radon transform by generalized Fourier slice theorem. Inverse Problems & Imaging, 2017, 11 (3) : 501519. doi: 10.3934/ipi.2017023 
[9] 
Qingling Zhang, Guoliang Wang, Wanquan Liu, Yi Zhang. Stabilization of discretetime Markovian jump systems with partially unknown transition probabilities. Discrete & Continuous Dynamical Systems  B, 2011, 16 (4) : 11971211. doi: 10.3934/dcdsb.2011.16.1197 
[10] 
Rebeccah E. Marsh, Jack A. Tuszyński, Michael Sawyer, Kenneth J. E. Vos. A model of competing saturable kinetic processes with application to the pharmacokinetics of the anticancer drug paclitaxel. Mathematical Biosciences & Engineering, 2011, 8 (2) : 325354. doi: 10.3934/mbe.2011.8.325 
[11] 
Fuke Wu, George Yin, Le Yi Wang. Razumikhintype theorems on moment exponential stability of functional differential equations involving twotimescale Markovian switching. Mathematical Control & Related Fields, 2015, 5 (3) : 697719. doi: 10.3934/mcrf.2015.5.697 
[12] 
Samuel N. Cohen, Lukasz Szpruch. On Markovian solutions to Markov Chain BSDEs. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 257269. doi: 10.3934/naco.2012.2.257 
[13] 
Bin Guo, Wenjie Gao. Finitetime blowup and extinction rates of solutions to an initial Neumann problem involving the $p(x,t)Laplace$ operator and a nonlocal term. Discrete & Continuous Dynamical Systems  A, 2016, 36 (2) : 715730. doi: 10.3934/dcds.2016.36.715 
[14] 
Shuo Wang, Heinz Schättler. Optimal control for cancer chemotherapy under tumor heterogeneity with MichealisMenten pharmacodynamics. Discrete & Continuous Dynamical Systems  B, 2019, 24 (5) : 23832405. doi: 10.3934/dcdsb.2019100 
[15] 
Maciej Leszczyński, Urszula Ledzewicz, Heinz Schättler. Optimal control for a mathematical model for antiangiogenic treatment with MichaelisMenten pharmacodynamics. Discrete & Continuous Dynamical Systems  B, 2019, 24 (5) : 23152334. doi: 10.3934/dcdsb.2019097 
[16] 
Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157165. doi: 10.3934/jgm.2017006 
[17] 
Doǧan Çömez. The modulated ergodic Hilbert transform. Discrete & Continuous Dynamical Systems  S, 2009, 2 (2) : 325336. doi: 10.3934/dcdss.2009.2.325 
[18] 
Sean Holman, Plamen Stefanov. The weighted Doppler transform. Inverse Problems & Imaging, 2010, 4 (1) : 111130. doi: 10.3934/ipi.2010.4.111 
[19] 
James W. Webber, Sean Holman. Microlocal analysis of a spindle transform. Inverse Problems & Imaging, 2019, 13 (2) : 231261. doi: 10.3934/ipi.2019013 
[20] 
Huimin Liang, Peixuan Weng, Yanling Tian. Bility and traveling wavefronts for a convolution model of mistletoes and birds with nonlocal diffusion. Discrete & Continuous Dynamical Systems  B, 2017, 22 (6) : 22072231. doi: 10.3934/dcdsb.2017093 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]