-
Previous Article
Modeling TB and HIV co-infections
- MBE Home
- This Issue
-
Next Article
Modeling dynamic changes in type 1 diabetes progression: Quantifying $\beta$-cell variation after the appearance of islet-specific autoimmune responses
HIV/AIDS epidemic in India and predicting the impact of the national response: Mathematical modeling and analysis
1. | Mathematical Institute, Centre for Mathematical Biology, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, United Kingdom |
2. | Department of Medicine, Christian Medical College, Vellore, India |
3. | Member, National AIDS Control Programmme Planning Team, Currently with Global AIDS Program, US Centers for Disease Control and Prevention, American Embassy New Delhi, India |
4. | Centre for Mathematical Biology, Mathematical Institute, University of Oxford, OX1 3LB Oxford |
[1] |
Manuel Delgado, Cristian Morales-Rodrigo, Antonio Suárez. Anti-angiogenic therapy based on the binding to receptors. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3871-3894. doi: 10.3934/dcds.2012.32.3871 |
[2] |
Jianquan Li, Xiaoqin Wang, Xiaolin Lin. Impact of behavioral change on the epidemic characteristics of an epidemic model without vital dynamics. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1425-1434. doi: 10.3934/mbe.2018065 |
[3] |
Mamadou L. Diagne, Ousmane Seydi, Aissata A. B. Sy. A two-group age of infection epidemic model with periodic behavioral changes. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019202 |
[4] |
Baba Issa Camara, Houda Mokrani, Evans K. Afenya. Mathematical modeling of glioma therapy using oncolytic viruses. Mathematical Biosciences & Engineering, 2013, 10 (3) : 565-578. doi: 10.3934/mbe.2013.10.565 |
[5] |
Reihaneh Mostolizadeh, Zahra Afsharnezhad, Anna Marciniak-Czochra. Mathematical model of Chimeric Anti-gene Receptor (CAR) T cell therapy with presence of cytokine. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 63-80. doi: 10.3934/naco.2018004 |
[6] |
Harsh Vardhan Jain, Avner Friedman. Modeling prostate cancer response to continuous versus intermittent androgen ablation therapy. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : 945-967. doi: 10.3934/dcdsb.2013.18.945 |
[7] |
Hem Joshi, Suzanne Lenhart, Kendra Albright, Kevin Gipson. Modeling the effect of information campaigns on the HIV epidemic in Uganda. Mathematical Biosciences & Engineering, 2008, 5 (4) : 757-770. doi: 10.3934/mbe.2008.5.757 |
[8] |
Oscar Patterson-Lomba, Muntaser Safan, Sherry Towers, Jay Taylor. Modeling the role of healthcare access inequalities in epidemic outcomes. Mathematical Biosciences & Engineering, 2016, 13 (5) : 1011-1041. doi: 10.3934/mbe.2016028 |
[9] |
Xi Huo. Modeling of contact tracing in epidemic populations structured by disease age. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1685-1713. doi: 10.3934/dcdsb.2015.20.1685 |
[10] |
P. Daniele, S. Giuffrè, S. Pia. Competitive financial equilibrium problems with policy interventions. Journal of Industrial & Management Optimization, 2005, 1 (1) : 39-52. doi: 10.3934/jimo.2005.1.39 |
[11] |
Brandy Rapatski, Juan Tolosa. Modeling and analysis of the San Francisco City Clinic Cohort (SFCCC) HIV-epidemic including treatment. Mathematical Biosciences & Engineering, 2014, 11 (3) : 599-619. doi: 10.3934/mbe.2014.11.599 |
[12] |
Grace Gao, Sasank Maganti, Karen A. Monsen. Older adults, frailty, and the social and behavioral determinants of health. Big Data & Information Analytics, 2017, 2 (3&4) : 1-12. doi: 10.3934/bdia.2017012 |
[13] |
Zi Sang, Zhipeng Qiu, Xiefei Yan, Yun Zou. Assessing the effect of non-pharmaceutical interventions on containing an emerging disease. Mathematical Biosciences & Engineering, 2012, 9 (1) : 147-164. doi: 10.3934/mbe.2012.9.147 |
[14] |
Cristian Morales-Rodrigo. A therapy inactivating the tumor angiogenic factors. Mathematical Biosciences & Engineering, 2013, 10 (1) : 185-198. doi: 10.3934/mbe.2013.10.185 |
[15] |
Carlo Brugna, Giuseppe Toscani. Boltzmann-type models for price formation in the presence of behavioral aspects. Networks & Heterogeneous Media, 2015, 10 (3) : 543-557. doi: 10.3934/nhm.2015.10.543 |
[16] |
Nicola Bellomo, Livio Gibelli, Nisrine Outada. On the interplay between behavioral dynamics and social interactions in human crowds. Kinetic & Related Models, 2019, 12 (2) : 397-409. doi: 10.3934/krm.2019017 |
[17] |
Danthai Thongphiew, Vira Chankong, Fang-Fang Yin, Q. Jackie Wu. An on-line adaptive radiation therapy system for intensity modulated radiation therapy: An application of multi-objective optimization. Journal of Industrial & Management Optimization, 2008, 4 (3) : 453-475. doi: 10.3934/jimo.2008.4.453 |
[18] |
Notice Ringa, Chris T. Bauch. Spatially-implicit modelling of disease-behaviour interactions in the context of non-pharmaceutical interventions. Mathematical Biosciences & Engineering, 2018, 15 (2) : 461-483. doi: 10.3934/mbe.2018021 |
[19] |
Jianjun Paul Tian. Finite-time perturbations of dynamical systems and applications to tumor therapy. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 469-479. doi: 10.3934/dcdsb.2009.12.469 |
[20] |
Urszula Ledzewicz, Helen Moore. Optimal control applied to a generalized Michaelis-Menten model of CML therapy. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 331-346. doi: 10.3934/dcdsb.2018022 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]