
Previous Article
Insights from epidemiological game theory into genderspecific vaccination against rubella
 MBE Home
 This Issue

Next Article
HIV/AIDS epidemic in India and predicting the impact of the national response: Mathematical modeling and analysis
Modeling TB and HIV coinfections
1.  Department of Mathematics and Statistics, Box 41042, Texas Tech University, Lubbock, TX 794091042, United States 
2.  Department of Mathematics, Purdue University, West Lafayette, IN 479071395 
3.  Department of Mathematics and Statistics, Arizona State University, P.O. Box 871804, Tempe, AZ 852871804 
[1] 
Georgi Kapitanov. A double agestructured model of the coinfection of tuberculosis and HIV. Mathematical Biosciences & Engineering, 2015, 12 (1) : 2340. doi: 10.3934/mbe.2015.12.23 
[2] 
Zindoga Mukandavire, Abba B. Gumel, Winston Garira, Jean Michel Tchuenche. Mathematical analysis of a model for HIVmalaria coinfection. Mathematical Biosciences & Engineering, 2009, 6 (2) : 333362. doi: 10.3934/mbe.2009.6.333 
[3] 
Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595607. doi: 10.3934/mbe.2007.4.595 
[4] 
Surabhi Pandey, Ezio Venturino. A TB model: Is disease eradication possible in India?. Mathematical Biosciences & Engineering, 2018, 15 (1) : 233254. doi: 10.3934/mbe.2018010 
[5] 
Expeditho Mtisi, Herieth Rwezaura, Jean Michel Tchuenche. A mathematical analysis of malaria and tuberculosis codynamics. Discrete & Continuous Dynamical Systems  B, 2009, 12 (4) : 827864. doi: 10.3934/dcdsb.2009.12.827 
[6] 
Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Ebraheem O. Alzahrani. A fractional model for the dynamics of tuberculosis (TB) using AtanganaBaleanu derivative. Discrete & Continuous Dynamical Systems  S, 2018, 0 (0) : 937956. doi: 10.3934/dcdss.2020055 
[7] 
Cristiana J. Silva, Delfim F. M. Torres. A TBHIV/AIDS coinfection model and optimal control treatment. Discrete & Continuous Dynamical Systems  A, 2015, 35 (9) : 46394663. doi: 10.3934/dcds.2015.35.4639 
[8] 
Oluwaseun Sharomi, Chandra N. Podder, Abba B. Gumel, Baojun Song. Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment. Mathematical Biosciences & Engineering, 2008, 5 (1) : 145174. doi: 10.3934/mbe.2008.5.145 
[9] 
Miguel Atencia, Esther GarcíaGaraluz, Gonzalo Joya. The ratio of hidden HIV infection in Cuba. Mathematical Biosciences & Engineering, 2013, 10 (4) : 959977. doi: 10.3934/mbe.2013.10.959 
[10] 
Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239259. doi: 10.3934/mbe.2009.6.239 
[11] 
Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems  B, 2013, 18 (1) : 3756. doi: 10.3934/dcdsb.2013.18.37 
[12] 
Yijun Lou, Li Liu, Daozhou Gao. Modeling coinfection of Ixodes tickborne pathogens. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 13011316. doi: 10.3934/mbe.2017067 
[13] 
Kazeem Oare Okosun, Robert Smith?. Optimal control analysis of malariaschistosomiasis coinfection dynamics. Mathematical Biosciences & Engineering, 2017, 14 (2) : 377405. doi: 10.3934/mbe.2017024 
[14] 
Jinliang Wang, Xiu Dong. Analysis of an HIV infection model incorporating latency age and infection age. Mathematical Biosciences & Engineering, 2018, 15 (3) : 569594. doi: 10.3934/mbe.2018026 
[15] 
Suman Ganguli, David Gammack, Denise E. Kirschner. A Metapopulation Model Of Granuloma Formation In The Lung During Infection With Mycobacterium Tuberculosis. Mathematical Biosciences & Engineering, 2005, 2 (3) : 535560. doi: 10.3934/mbe.2005.2.535 
[16] 
Fabrizio Clarelli, Roberto Natalini. A pressure model of immune response to mycobacterium tuberculosis infection in several space dimensions. Mathematical Biosciences & Engineering, 2010, 7 (2) : 277300. doi: 10.3934/mbe.2010.7.277 
[17] 
Chang Gong, Jennifer J. Linderman, Denise Kirschner. A population model capturing dynamics of tuberculosis granulomas predicts host infection outcomes. Mathematical Biosciences & Engineering, 2015, 12 (3) : 625642. doi: 10.3934/mbe.2015.12.625 
[18] 
Gesham Magombedze, Winston Garira, Eddie Mwenje. Modelling the human immune response mechanisms to mycobacterium tuberculosis infection in the lungs. Mathematical Biosciences & Engineering, 2006, 3 (4) : 661682. doi: 10.3934/mbe.2006.3.661 
[19] 
Danyun He, Qian Wang, WingCheong Lo. Mathematical analysis of macrophagebacteria interaction in tuberculosis infection. Discrete & Continuous Dynamical Systems  B, 2018, 23 (8) : 33873413. doi: 10.3934/dcdsb.2018239 
[20] 
Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using CaputoFabrizio derivative. Discrete & Continuous Dynamical Systems  S, 2018, 0 (0) : 975993. doi: 10.3934/dcdss.2020057 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]