- Previous Article
- MBE Home
- This Issue
-
Next Article
Evidence of chaos in eco-epidemic models
A mathematical model of weight change with adaptation
1. | Department of Mathematical Sciences, Montclair State University, Upper Montclair, NJ 07043, United States |
2. | Department of Mathematical Sciences, Montclair State University, Montclair, NJ 07043, United States, United States |
3. | Department of Medicine, Endocrine Research Unit, Mayo Clinic and Mayo Foundation, Rochester, MN 55905, United States |
4. | Pennington Biomedical Research Center, Ingestive Behavior Laboratory, Baton Rouge, LA 70808, United States |
[1] |
Daniela Calvetti, Jenni Heino, Erkki Somersalo, Knarik Tunyan. Bayesian stationary state flux balance analysis for a skeletal muscle metabolic model. Inverse Problems and Imaging, 2007, 1 (2) : 247-263. doi: 10.3934/ipi.2007.1.247 |
[2] |
Arturo Hidalgo, Lourdes Tello. On a climatological energy balance model with continents distribution. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1503-1519. doi: 10.3934/dcds.2015.35.1503 |
[3] |
Rinaldo M. Colombo, Graziano Guerra. Hyperbolic balance laws with a dissipative non local source. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1077-1090. doi: 10.3934/cpaa.2008.7.1077 |
[4] |
Laetitia Paoli. Vibrations of a beam between stops: Collision events and energy balance properties. Evolution Equations and Control Theory, 2020, 9 (4) : 1133-1151. doi: 10.3934/eect.2020057 |
[5] |
James Walsh, Christopher Rackauckas. On the Budyko-Sellers energy balance climate model with ice line coupling. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2187-2216. doi: 10.3934/dcdsb.2015.20.2187 |
[6] |
Nataliia V. Gorban, Olha V. Khomenko, Liliia S. Paliichuk, Alla M. Tkachuk. Long-time behavior of state functions for climate energy balance model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1887-1897. doi: 10.3934/dcdsb.2017112 |
[7] |
Jaeyoung Byeon, Sungwon Cho, Junsang Park. On the location of a peak point of a least energy solution for Hénon equation. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1055-1081. doi: 10.3934/dcds.2011.30.1055 |
[8] |
Jitendra Kumar, Gurmeet Kaur, Evangelos Tsotsas. An accurate and efficient discrete formulation of aggregation population balance equation. Kinetic and Related Models, 2016, 9 (2) : 373-391. doi: 10.3934/krm.2016.9.373 |
[9] |
James Walsh. Diffusive heat transport in Budyko's energy balance climate model with a dynamic ice line. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2687-2715. doi: 10.3934/dcdsb.2017131 |
[10] |
Gregorio Díaz, Jesús Ildefonso Díaz. Stochastic energy balance climate models with Legendre weighted diffusion and an additive cylindrical Wiener process forcing. Discrete and Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021165 |
[11] |
Futoshi Takahashi. On the number of maximum points of least energy solution to a two-dimensional Hénon equation with large exponent. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1237-1241. doi: 10.3934/cpaa.2013.12.1237 |
[12] |
Vanessa Barros, Carlos Nonato, Carlos Raposo. Global existence and energy decay of solutions for a wave equation with non-constant delay and nonlinear weights. Electronic Research Archive, 2020, 28 (1) : 205-220. doi: 10.3934/era.2020014 |
[13] |
Guangyu Xu, Jun Zhou. Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1805-1820. doi: 10.3934/cpaa.2018086 |
[14] |
Rajesh Kumar, Jitendra Kumar, Gerald Warnecke. Convergence analysis of a finite volume scheme for solving non-linear aggregation-breakage population balance equations. Kinetic and Related Models, 2014, 7 (4) : 713-737. doi: 10.3934/krm.2014.7.713 |
[15] |
Ginestra Bianconi, Riccardo Zecchina. Viable flux distribution in metabolic networks. Networks and Heterogeneous Media, 2008, 3 (2) : 361-369. doi: 10.3934/nhm.2008.3.361 |
[16] |
Daomin Cao, Hang Li. High energy solutions of the Choquard equation. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 3023-3032. doi: 10.3934/dcds.2018129 |
[17] |
Kazumasa Fujiwara, Shuji Machihara, Tohru Ozawa. Remark on a semirelativistic equation in the energy space. Conference Publications, 2015, 2015 (special) : 473-478. doi: 10.3934/proc.2015.0473 |
[18] |
Vincent Ducrot, Pascal Frey, Alexandra Claisse. Levelsets and anisotropic mesh adaptation. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 165-183. doi: 10.3934/dcds.2009.23.165 |
[19] |
Annie Raoult. Symmetry groups in nonlinear elasticity: an exercise in vintage mathematics. Communications on Pure and Applied Analysis, 2009, 8 (1) : 435-456. doi: 10.3934/cpaa.2009.8.435 |
[20] |
Alex James, Simon Green, Mike Plank. Modelling the dynamic response of oxygen uptake to exercise. Discrete and Continuous Dynamical Systems - B, 2009, 12 (2) : 361-370. doi: 10.3934/dcdsb.2009.12.361 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]