 Previous Article
 MBE Home
 This Issue

Next Article
Evidence of chaos in ecoepidemic models
A mathematical model of weight change with adaptation
1.  Department of Mathematical Sciences, Montclair State University, Upper Montclair, NJ 07043, United States 
2.  Department of Mathematical Sciences, Montclair State University, Montclair, NJ 07043, United States, United States 
3.  Department of Medicine, Endocrine Research Unit, Mayo Clinic and Mayo Foundation, Rochester, MN 55905, United States 
4.  Pennington Biomedical Research Center, Ingestive Behavior Laboratory, Baton Rouge, LA 70808, United States 
[1] 
Daniela Calvetti, Jenni Heino, Erkki Somersalo, Knarik Tunyan. Bayesian stationary state flux balance analysis for a skeletal muscle metabolic model. Inverse Problems & Imaging, 2007, 1 (2) : 247263. doi: 10.3934/ipi.2007.1.247 
[2] 
Arturo Hidalgo, Lourdes Tello. On a climatological energy balance model with continents distribution. Discrete & Continuous Dynamical Systems  A, 2015, 35 (4) : 15031519. doi: 10.3934/dcds.2015.35.1503 
[3] 
Rinaldo M. Colombo, Graziano Guerra. Hyperbolic balance laws with a dissipative non local source. Communications on Pure & Applied Analysis, 2008, 7 (5) : 10771090. doi: 10.3934/cpaa.2008.7.1077 
[4] 
Jaeyoung Byeon, Sungwon Cho, Junsang Park. On the location of a peak point of a least energy solution for Hénon equation. Discrete & Continuous Dynamical Systems  A, 2011, 30 (4) : 10551081. doi: 10.3934/dcds.2011.30.1055 
[5] 
James Walsh, Christopher Rackauckas. On the BudykoSellers energy balance climate model with ice line coupling. Discrete & Continuous Dynamical Systems  B, 2015, 20 (7) : 21872216. doi: 10.3934/dcdsb.2015.20.2187 
[6] 
Nataliia V. Gorban, Olha V. Khomenko, Liliia S. Paliichuk, Alla M. Tkachuk. Longtime behavior of state functions for climate energy balance model. Discrete & Continuous Dynamical Systems  B, 2017, 22 (5) : 18871897. doi: 10.3934/dcdsb.2017112 
[7] 
Laetitia Paoli. Vibrations of a beam between stops: Collision events and energy balance properties. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020057 
[8] 
Futoshi Takahashi. On the number of maximum points of least energy solution to a twodimensional Hénon equation with large exponent. Communications on Pure & Applied Analysis, 2013, 12 (3) : 12371241. doi: 10.3934/cpaa.2013.12.1237 
[9] 
Vanessa Barros, Carlos Nonato, Carlos Raposo. Global existence and energy decay of solutions for a wave equation with nonconstant delay and nonlinear weights. Electronic Research Archive, 2020, 28 (1) : 205220. doi: 10.3934/era.2020014 
[10] 
James Walsh. Diffusive heat transport in Budyko's energy balance climate model with a dynamic ice line. Discrete & Continuous Dynamical Systems  B, 2017, 22 (7) : 26872715. doi: 10.3934/dcdsb.2017131 
[11] 
Jitendra Kumar, Gurmeet Kaur, Evangelos Tsotsas. An accurate and efficient discrete formulation of aggregation population balance equation. Kinetic & Related Models, 2016, 9 (2) : 373391. doi: 10.3934/krm.2016.9.373 
[12] 
Guangyu Xu, Jun Zhou. Global existence and blowup of solutions to a singular NonNewton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure & Applied Analysis, 2018, 17 (5) : 18051820. doi: 10.3934/cpaa.2018086 
[13] 
Rajesh Kumar, Jitendra Kumar, Gerald Warnecke. Convergence analysis of a finite volume scheme for solving nonlinear aggregationbreakage population balance equations. Kinetic & Related Models, 2014, 7 (4) : 713737. doi: 10.3934/krm.2014.7.713 
[14] 
Vincent Ducrot, Pascal Frey, Alexandra Claisse. Levelsets and anisotropic mesh adaptation. Discrete & Continuous Dynamical Systems  A, 2009, 23 (1&2) : 165183. doi: 10.3934/dcds.2009.23.165 
[15] 
Kazumasa Fujiwara, Shuji Machihara, Tohru Ozawa. Remark on a semirelativistic equation in the energy space. Conference Publications, 2015, 2015 (special) : 473478. doi: 10.3934/proc.2015.0473 
[16] 
Daomin Cao, Hang Li. High energy solutions of the Choquard equation. Discrete & Continuous Dynamical Systems  A, 2018, 38 (6) : 30233032. doi: 10.3934/dcds.2018129 
[17] 
Ginestra Bianconi, Riccardo Zecchina. Viable flux distribution in metabolic networks. Networks & Heterogeneous Media, 2008, 3 (2) : 361369. doi: 10.3934/nhm.2008.3.361 
[18] 
Annie Raoult. Symmetry groups in nonlinear elasticity: an exercise in vintage mathematics. Communications on Pure & Applied Analysis, 2009, 8 (1) : 435456. doi: 10.3934/cpaa.2009.8.435 
[19] 
Alex James, Simon Green, Mike Plank. Modelling the dynamic response of oxygen uptake to exercise. Discrete & Continuous Dynamical Systems  B, 2009, 12 (2) : 361370. doi: 10.3934/dcdsb.2009.12.361 
[20] 
Sepideh Mirrahimi. Adaptation and migration of a population between patches. Discrete & Continuous Dynamical Systems  B, 2013, 18 (3) : 753768. doi: 10.3934/dcdsb.2013.18.753 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]