
Previous Article
A pressure model of immune response to mycobacterium tuberculosis infection in several space dimensions
 MBE Home
 This Issue

Next Article
Morphological spatial patterns in a reaction diffusion model for metal growth
Surface tension and modeling of cellular intercalation during zebrafish gastrulation
1.  Department of Mathematics and Statistics, California State University, Holt Hall 181, Chico, CA 95929, United States 
2.  Department of Biological Sciences, Vanderbilt University, MRBIII Suite 4260A, Nashville, TN 37203, United States 
[1] 
Marco Scianna, Luigi Preziosi, Katarina Wolf. A Cellular Potts model simulating cell migration on and in matrix environments. Mathematical Biosciences & Engineering, 2013, 10 (1) : 235261. doi: 10.3934/mbe.2013.10.235 
[2] 
Mostafa Adimy, Fabien Crauste, Laurent PujoMenjouet. On the stability of a nonlinear maturity structured model of cellular proliferation. Discrete & Continuous Dynamical Systems, 2005, 12 (3) : 501522. doi: 10.3934/dcds.2005.12.501 
[3] 
Grigor Nika, Bogdan Vernescu. Rate of convergence for a multiscale model of dilute emulsions with nonuniform surface tension. Discrete & Continuous Dynamical Systems  S, 2016, 9 (5) : 15531564. doi: 10.3934/dcdss.2016062 
[4] 
Chengchun Hao. Cauchy problem for viscous shallow water equations with surface tension. Discrete & Continuous Dynamical Systems  B, 2010, 13 (3) : 593608. doi: 10.3934/dcdsb.2010.13.593 
[5] 
Min Chen, Nghiem V. Nguyen, ShuMing Sun. Solitarywave solutions to Boussinesq systems with large surface tension. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 11531184. doi: 10.3934/dcds.2010.26.1153 
[6] 
Samuel Walsh. Steady stratified periodic gravity waves with surface tension II: Global bifurcation. Discrete & Continuous Dynamical Systems, 2014, 34 (8) : 32873315. doi: 10.3934/dcds.2014.34.3287 
[7] 
Hyung Ju Hwang, Youngmin Oh, Marco Antonio Fontelos. The vanishing surface tension limit for the HeleShaw problem. Discrete & Continuous Dynamical Systems  B, 2016, 21 (10) : 34793514. doi: 10.3934/dcdsb.2016108 
[8] 
Calin Iulian Martin. Dispersion relations for periodic water waves with surface tension and discontinuous vorticity. Discrete & Continuous Dynamical Systems, 2014, 34 (8) : 31093123. doi: 10.3934/dcds.2014.34.3109 
[9] 
Roman M. Taranets, Jeffrey T. Wong. Existence of weak solutions for particleladen flow with surface tension. Discrete & Continuous Dynamical Systems, 2018, 38 (10) : 49794996. doi: 10.3934/dcds.2018217 
[10] 
Nataliya Vasylyeva, Vitalii Overko. The HeleShaw problem with surface tension in the case of subdiffusion. Communications on Pure & Applied Analysis, 2016, 15 (5) : 19411974. doi: 10.3934/cpaa.2016023 
[11] 
Samuel Walsh. Steady stratified periodic gravity waves with surface tension I: Local bifurcation. Discrete & Continuous Dynamical Systems, 2014, 34 (8) : 32413285. doi: 10.3934/dcds.2014.34.3241 
[12] 
Eduardo IbarguenMondragon, Lourdes Esteva, Leslie ChávezGalán. A mathematical model for cellular immunology of tuberculosis. Mathematical Biosciences & Engineering, 2011, 8 (4) : 973986. doi: 10.3934/mbe.2011.8.973 
[13] 
Ying Sue Huang, Chai Wah Wu. Stability of cellular neural network with small delays. Conference Publications, 2005, 2005 (Special) : 420426. doi: 10.3934/proc.2005.2005.420 
[14] 
Sergei A. Avdonin, Boris P. Belinskiy. Controllability of a string under tension. Conference Publications, 2003, 2003 (Special) : 5767. doi: 10.3934/proc.2003.2003.57 
[15] 
Jie Wang, Xiaoqiang Wang. New asymptotic analysis method for phase field models in moving boundary problem with surface tension. Discrete & Continuous Dynamical Systems  B, 2015, 20 (9) : 31853213. doi: 10.3934/dcdsb.2015.20.3185 
[16] 
Shengfu Deng. Generalized pitchfork bifurcation on a twodimensional gaseous star with selfgravity and surface tension. Discrete & Continuous Dynamical Systems, 2014, 34 (9) : 34193435. doi: 10.3934/dcds.2014.34.3419 
[17] 
Marcelo M. Disconzi, Igor Kukavica. A priori estimates for the 3D compressible freeboundary Euler equations with surface tension in the case of a liquid. Evolution Equations & Control Theory, 2019, 8 (3) : 503542. doi: 10.3934/eect.2019025 
[18] 
ClaudeMichel Brauner, Michael L. Frankel, Josephus Hulshof, Alessandra Lunardi, G. Sivashinsky. On the κ  θ model of cellular flames: Existence in the large and asymptotics. Discrete & Continuous Dynamical Systems  S, 2008, 1 (1) : 2739. doi: 10.3934/dcdss.2008.1.27 
[19] 
Michael Frankel, Victor Roytburd, Gregory I. Sivashinsky. Dissipativity for a semilinearized system modeling cellular flames. Discrete & Continuous Dynamical Systems  S, 2011, 4 (1) : 8399. doi: 10.3934/dcdss.2011.4.83 
[20] 
Alexis B. Cook, Daniel R. Ziazadeh, Jianfeng Lu, Trachette L. Jackson. An integrated cellular and subcellular model of cancer chemotherapy and therapies that target cell survival. Mathematical Biosciences & Engineering, 2015, 12 (6) : 12191235. doi: 10.3934/mbe.2015.12.1219 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]