2010, 7(2): 401-419. doi: 10.3934/mbe.2010.7.401

Characterization of the dynamic behavior of nonlinear biosystems in the presence of model uncertainty using singular invariance PDEs: Application to immobilized enzyme and cell bioreactors

1. 

Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609-2280, United States

2. 

Department of Project Management, Technological Educational Institute (TEI) of Larissa, Larissa - 41110, Greece

Received  January 2009 Revised  August 2009 Published  April 2010

A new approach to the problem of characterizing the dynamic behavior of nonlinear biosystems in the presence of model uncertainty using the notion of slow invariant manifold is proposed. The problem of interest is addressed within the context of singular partial differential equations (PDE) theory, and in particular, through a system of singular quasi-linear invariance PDEs for which a general set of conditions for solvability is provided. Within the class of analytic solutions, this set of conditions guarantees the existence and uniqueness of a locally analytic solution which represents the system's slow invariant manifold exponentially attracting all dynamic trajectories in the absence of model uncertainty. An exact reduced-order model is then obtained through the restriction of the original biosystem dynamics on the slow manifold. The analyticity property of the solution to the invariance PDEs enables the development of a series solution method that can be easily implemented using MAPLE leading to polynomial approximations up to the desired degree of accuracy. Furthermore, the aforementioned attractivity property and the transition towards the above manifold is analyzed and characterized in the presence of model uncertainty. Finally, examples of certain immobilized enzyme bioreactors are considered to elucidate aspects of the proposed context of analysis.
Citation: Nikolaos Kazantzis, Vasiliki Kazantzi. Characterization of the dynamic behavior of nonlinear biosystems in the presence of model uncertainty using singular invariance PDEs: Application to immobilized enzyme and cell bioreactors. Mathematical Biosciences & Engineering, 2010, 7 (2) : 401-419. doi: 10.3934/mbe.2010.7.401
[1]

Alexander Komech. Attractors of Hamilton nonlinear PDEs. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6201-6256. doi: 10.3934/dcds.2016071

[2]

D.J. Georgiev, A. J. Roberts, D. V. Strunin. Nonlinear dynamics on centre manifolds describing turbulent floods: k-$\omega$ model. Conference Publications, 2007, 2007 (Special) : 419-428. doi: 10.3934/proc.2007.2007.419

[3]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš. Perturbations of nonlinear eigenvalue problems. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1403-1431. doi: 10.3934/cpaa.2019068

[4]

Chunhua Shan. Slow-fast dynamics and nonlinear oscillations in transmission of mosquito-borne diseases. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1447-1469. doi: 10.3934/dcdsb.2021097

[5]

Bruno Premoselli. Einstein-Lichnerowicz type singular perturbations of critical nonlinear elliptic equations in dimension 3. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5087-5103. doi: 10.3934/dcds.2021069

[6]

Marianne Beringhier, Adrien Leygue, Francisco Chinesta. Parametric nonlinear PDEs with multiple solutions: A PGD approach. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 383-392. doi: 10.3934/dcdss.2016002

[7]

Swann Marx, Tillmann Weisser, Didier Henrion, Jean Bernard Lasserre. A moment approach for entropy solutions to nonlinear hyperbolic PDEs. Mathematical Control and Related Fields, 2020, 10 (1) : 113-140. doi: 10.3934/mcrf.2019032

[8]

Gábor Székelyhidi, Ben Weinkove. On a constant rank theorem for nonlinear elliptic PDEs. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6523-6532. doi: 10.3934/dcds.2016081

[9]

P. De Maesschalck, Freddy Dumortier. Detectable canard cycles with singular slow dynamics of any order at the turning point. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 109-140. doi: 10.3934/dcds.2011.29.109

[10]

Jianquan Li, Yicang Zhou, Jianhong Wu, Zhien Ma. Complex dynamics of a simple epidemic model with a nonlinear incidence. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 161-173. doi: 10.3934/dcdsb.2007.8.161

[11]

Mazyar Ghani Varzaneh, Sebastian Riedel. A dynamical theory for singular stochastic delay differential equations Ⅱ: nonlinear equations and invariant manifolds. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4587-4612. doi: 10.3934/dcdsb.2020304

[12]

H.Thomas Banks, Shuhua Hu. Nonlinear stochastic Markov processes and modeling uncertainty in populations. Mathematical Biosciences & Engineering, 2012, 9 (1) : 1-25. doi: 10.3934/mbe.2012.9.1

[13]

Yuri Latushkin, Jan Prüss, Ronald Schnaubelt. Center manifolds and dynamics near equilibria of quasilinear parabolic systems with fully nonlinear boundary conditions. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 595-633. doi: 10.3934/dcdsb.2008.9.595

[14]

Risei Kano, Yusuke Murase. Solvability of nonlinear evolution equations generated by subdifferentials and perturbations. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 75-93. doi: 10.3934/dcdss.2014.7.75

[15]

Liping Wang, Chunyi Zhao. Infinitely many solutions for nonlinear Schrödinger equations with slow decaying of potential. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1707-1731. doi: 10.3934/dcds.2017071

[16]

Vahagn Nersesyan. Approximate controllability of nonlinear parabolic PDEs in arbitrary space dimension. Mathematical Control and Related Fields, 2021, 11 (2) : 237-251. doi: 10.3934/mcrf.2020035

[17]

Lorena Bociu, Barbara Kaltenbacher, Petronela Radu. Preface: Introduction to the Special Volume on Nonlinear PDEs and Control Theory with Applications. Evolution Equations and Control Theory, 2013, 2 (2) : i-ii. doi: 10.3934/eect.2013.2.2i

[18]

Rainer Buckdahn, Christian Keller, Jin Ma, Jianfeng Zhang. Fully nonlinear stochastic and rough PDEs: Classical and viscosity solutions. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 7-. doi: 10.1186/s41546-020-00049-8

[19]

Suqi Ma, Qishao Lu, Shuli Mei. Dynamics of a logistic population model with maturation delay and nonlinear birth rate. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 735-752. doi: 10.3934/dcdsb.2005.5.735

[20]

Youshan Tao. Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2705-2722. doi: 10.3934/dcdsb.2013.18.2705

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]