 Previous Article
 MBE Home
 This Issue

Next Article
Mathematical observations on the relation between eclosion periods and the copulation rate of cicadas
Pulse vaccination strategies in a metapopulation SIR model
1.  Division of Mathematics, University of Dundee, Dundee, Scotland, DD1 4HN, United Kingdom 
[1] 
Shujing Gao, Dehui Xie, Lansun Chen. Pulse vaccination strategy in a delayed sir epidemic model with vertical transmission. Discrete & Continuous Dynamical Systems  B, 2007, 7 (1) : 7786. doi: 10.3934/dcdsb.2007.7.77 
[2] 
Qianqian Cui, Zhipeng Qiu, Ling Ding. An SIR epidemic model with vaccination in a patchy environment. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 11411157. doi: 10.3934/mbe.2017059 
[3] 
Jinyan Wang, Yanni Xiao, Robert A. Cheke. Modelling the effects of contaminated environments in mainland China on seasonal HFMD infections and the potential benefit of a pulse vaccination strategy. Discrete & Continuous Dynamical Systems  B, 2019, 24 (11) : 58495870. doi: 10.3934/dcdsb.2019109 
[4] 
Urszula Ledzewicz, Heinz Schättler. On optimal singular controls for a general SIRmodel with vaccination and treatment. Conference Publications, 2011, 2011 (Special) : 981990. doi: 10.3934/proc.2011.2011.981 
[5] 
Aili Wang, Yanni Xiao, Robert A. Cheke. Global dynamics of a piecewise epidemic model with switching vaccination strategy. Discrete & Continuous Dynamical Systems  B, 2014, 19 (9) : 29152940. doi: 10.3934/dcdsb.2014.19.2915 
[6] 
Dashun Xu, Z. Feng. A metapopulation model with local competitions. Discrete & Continuous Dynamical Systems  B, 2009, 12 (2) : 495510. doi: 10.3934/dcdsb.2009.12.495 
[7] 
Erika Asano, Louis J. Gross, Suzanne Lenhart, Leslie A. Real. Optimal control of vaccine distribution in a rabies metapopulation model. Mathematical Biosciences & Engineering, 2008, 5 (2) : 219238. doi: 10.3934/mbe.2008.5.219 
[8] 
Zhilan Feng, Robert Swihart, Yingfei Yi, Huaiping Zhu. Coexistence in a metapopulation model with explicit local dynamics. Mathematical Biosciences & Engineering, 2004, 1 (1) : 131145. doi: 10.3934/mbe.2004.1.131 
[9] 
Luca Bolzoni, Rossella Della Marca, Maria Groppi, Alessandra Gragnani. Dynamics of a metapopulation epidemic model with localized culling. Discrete & Continuous Dynamical Systems  B, 2017, 22 (11) : 00. doi: 10.3934/dcdsb.2020036 
[10] 
Mehdi Badra. Abstract settings for stabilization of nonlinear parabolic system with a Riccatibased strategy. Application to NavierStokes and Boussinesq equations with Neumann or Dirichlet control. Discrete & Continuous Dynamical Systems  A, 2012, 32 (4) : 11691208. doi: 10.3934/dcds.2012.32.1169 
[11] 
Jing Hui, Lansun Chen. Impulsive vaccination of sir epidemic models with nonlinear incidence rates. Discrete & Continuous Dynamical Systems  B, 2004, 4 (3) : 595605. doi: 10.3934/dcdsb.2004.4.595 
[12] 
Siyu Liu, Yong Li, Yingjie Bi, Qingdao Huang. Mixed vaccination strategy for the control of tuberculosis: A case study in China. Mathematical Biosciences & Engineering, 2017, 14 (3) : 695708. doi: 10.3934/mbe.2017039 
[13] 
Siyu Liu, Xue Yang, Yingjie Bi, Yong Li. Dynamic behavior and optimal scheduling for mixed vaccination strategy with temporary immunity. Discrete & Continuous Dynamical Systems  B, 2019, 24 (4) : 14691483. doi: 10.3934/dcdsb.2018216 
[14] 
Suman Ganguli, David Gammack, Denise E. Kirschner. A Metapopulation Model Of Granuloma Formation In The Lung During Infection With Mycobacterium Tuberculosis. Mathematical Biosciences & Engineering, 2005, 2 (3) : 535560. doi: 10.3934/mbe.2005.2.535 
[15] 
Britnee Crawford, Christopher KribsZaleta. A metapopulation model for sylvatic T. cruzi transmission with vector migration. Mathematical Biosciences & Engineering, 2014, 11 (3) : 471509. doi: 10.3934/mbe.2014.11.471 
[16] 
Panagiotes A. Voltairas, Antonios Charalambopoulos, Dimitrios I. Fotiadis, Lambros K. Michalis. A quasilumped model for the peripheral distortion of the arterial pulse. Mathematical Biosciences & Engineering, 2012, 9 (1) : 175198. doi: 10.3934/mbe.2012.9.175 
[17] 
Islam A. Moneim, David Greenhalgh. Use Of A Periodic Vaccination Strategy To Control The Spread Of Epidemics With Seasonally Varying Contact Rate. Mathematical Biosciences & Engineering, 2005, 2 (3) : 591611. doi: 10.3934/mbe.2005.2.591 
[18] 
IvÁn Area, FaÏÇal NdaÏrou, Juan J. Nieto, Cristiana J. Silva, Delfim F. M. Torres. Ebola model and optimal control with vaccination constraints. Journal of Industrial & Management Optimization, 2018, 14 (2) : 427446. doi: 10.3934/jimo.2017054 
[19] 
Wisdom S. Avusuglo, Kenzu Abdella, Wenying Feng. Stability analysis on an economic epidemiological model with vaccination. Mathematical Biosciences & Engineering, 2017, 14 (4) : 975999. doi: 10.3934/mbe.2017051 
[20] 
Tao Feng, Zhipeng Qiu. Global analysis of a stochastic TB model with vaccination and treatment. Discrete & Continuous Dynamical Systems  B, 2019, 24 (6) : 29232939. doi: 10.3934/dcdsb.2018292 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]