2010, 7(3): 579-602. doi: 10.3934/mbe.2010.7.579

On the interaction between the immune system and an exponentially replicating pathogen

1. 

European Institute of Oncology, Division of Epidemiology and Biostatistics, Via Ripamonti 435, 20141 Milano

Received  July 2009 Revised  October 2009 Published  June 2010

In this work, we generalize the Pugliese-Gandolfi Model [A. Pugliese and A. Gandolfi, Math Biosc, 214,73 (2008)] of interaction between an exponentially replicating pathogen and the immune system. After the generalization, we study the properties of boundedness and unboundedness of the solutions, and we also give a condition for the global eradication as well as for the onset of sustained oscillations. Then, we study the condition for the uniqueness of the arising limit cycle, with numerical applications to the Pugliese-Gandolfi model. By means of simulations, we also show some alternative ways to reaching the elimination of the pathogen and interesting effects linked to variations in aspecific immune response. After shortly studying some pathological cases of interest, we include in our model distributed and constant delays and we show that also delays may unstabilize the equilibria.
Citation: Alberto d'Onofrio. On the interaction between the immune system and an exponentially replicating pathogen. Mathematical Biosciences & Engineering, 2010, 7 (3) : 579-602. doi: 10.3934/mbe.2010.7.579
[1]

Jaume Llibre, Ana Rodrigues. On the limit cycles of the Floquet differential equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1129-1136. doi: 10.3934/dcdsb.2014.19.1129

[2]

Jaume Llibre, Claudia Valls. Algebraic limit cycles for quadratic polynomial differential systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2475-2485. doi: 10.3934/dcdsb.2018070

[3]

Changjing Zhuge, Xiaojuan Sun, Jinzhi Lei. On positive solutions and the Omega limit set for a class of delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2487-2503. doi: 10.3934/dcdsb.2013.18.2487

[4]

Ricardo M. Martins, Otávio M. L. Gomide. Limit cycles for quadratic and cubic planar differential equations under polynomial perturbations of small degree. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3353-3386. doi: 10.3934/dcds.2017142

[5]

José Luis Bravo, Manuel Fernández, Armengol Gasull. Stability of singular limit cycles for Abel equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1873-1890. doi: 10.3934/dcds.2015.35.1873

[6]

Salomón Rebollo-Perdomo, Claudio Vidal. Bifurcation of limit cycles for a family of perturbed Kukles differential systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4189-4202. doi: 10.3934/dcds.2018182

[7]

Armengol Gasull, Hector Giacomini. Upper bounds for the number of limit cycles of some planar polynomial differential systems. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 217-229. doi: 10.3934/dcds.2010.27.217

[8]

Jackson Itikawa, Jaume Llibre, Ana Cristina Mereu, Regilene Oliveira. Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3259-3272. doi: 10.3934/dcdsb.2017136

[9]

Shimin Li, Jaume Llibre. On the limit cycles of planar discontinuous piecewise linear differential systems with a unique equilibrium. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5885-5901. doi: 10.3934/dcdsb.2019111

[10]

Amelia Álvarez, José-Luis Bravo, Manuel Fernández. The number of limit cycles for generalized Abel equations with periodic coefficients of definite sign. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1493-1501. doi: 10.3934/cpaa.2009.8.1493

[11]

Michael Dellnitz, Mirko Hessel-Von Molo, Adrian Ziessler. On the computation of attractors for delay differential equations. Journal of Computational Dynamics, 2016, 3 (1) : 93-112. doi: 10.3934/jcd.2016005

[12]

Hermann Brunner, Stefano Maset. Time transformations for delay differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 751-775. doi: 10.3934/dcds.2009.25.751

[13]

Klaudiusz Wójcik, Piotr Zgliczyński. Topological horseshoes and delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 827-852. doi: 10.3934/dcds.2005.12.827

[14]

Serhiy Yanchuk, Leonhard Lücken, Matthias Wolfrum, Alexander Mielke. Spectrum and amplitude equations for scalar delay-differential equations with large delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 537-553. doi: 10.3934/dcds.2015.35.537

[15]

Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057

[16]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[17]

Alfonso Ruiz-Herrera. Chaos in delay differential equations with applications in population dynamics. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1633-1644. doi: 10.3934/dcds.2013.33.1633

[18]

Leonid Berezansky, Elena Braverman. Stability of linear differential equations with a distributed delay. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1361-1375. doi: 10.3934/cpaa.2011.10.1361

[19]

Eduardo Liz, Manuel Pinto, Gonzalo Robledo, Sergei Trofimchuk, Victor Tkachenko. Wright type delay differential equations with negative Schwarzian. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 309-321. doi: 10.3934/dcds.2003.9.309

[20]

C. M. Groothedde, J. D. Mireles James. Parameterization method for unstable manifolds of delay differential equations. Journal of Computational Dynamics, 2017, 4 (1&2) : 21-70. doi: 10.3934/jcd.2017002

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]