• Previous Article
    Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy
  • MBE Home
  • This Issue
  • Next Article
    A mathematical study of a syntrophic relationship of a model of anaerobic digestion process
2010, 7(3): 657-673. doi: 10.3934/mbe.2010.7.657

Alternative transmission modes for Trypanosoma cruzi

1. 

Mathematics Department, University of Texas at Arlington, Box 19408, Arlington, TX 76019-0408, United States

Received  July 2009 Revised  April 2010 Published  June 2010

The parasite Trypanosoma cruzi, which causes Chagas' disease, is typically transmitted through a cycle in which vectors become infected through bloodmeals on infected hosts and then infect other hosts through defecation at the sites of subsequent feedings. The vectors native to the southeastern United States, however, are inefficient at transmitting T. cruzi in this way, which suggests that alternative transmission modes may be responsible for maintaining the established sylvatic infection cycle. Vertical and oral transmission of sylvatic hosts, as well as differential behavior of infected vectors, have been observed anecdotally. This study develops a model which accounts for these alternative modes of transmission, and applies it to transmission between raccoons and the vector Triatoma sanguisuga. Analysis of the system of nonlinear differential equations focuses on endemic prevalence levels and on the infection's basic reproductive number, whose form may account for how a combination of traditionally secondary infection routes can maintain the transmission cycle when the usual primary route becomes ineffective.
Citation: Christopher M. Kribs-Zaleta. Alternative transmission modes for Trypanosoma cruzi . Mathematical Biosciences & Engineering, 2010, 7 (3) : 657-673. doi: 10.3934/mbe.2010.7.657
[1]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[2]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[3]

Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 217-267. doi: 10.3934/dcdsb.2020328

[4]

Tin Phan, Bruce Pell, Amy E. Kendig, Elizabeth T. Borer, Yang Kuang. Rich dynamics of a simple delay host-pathogen model of cell-to-cell infection for plant virus. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 515-539. doi: 10.3934/dcdsb.2020261

[5]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020176

[6]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[7]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[8]

Wen Li, Wei-Hui Liu, Seak Weng Vong. Perron vector analysis for irreducible nonnegative tensors and its applications. Journal of Industrial & Management Optimization, 2021, 17 (1) : 29-50. doi: 10.3934/jimo.2019097

[9]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[10]

Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145

[11]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (106)
  • HTML views (0)
  • Cited by (20)

Other articles
by authors

[Back to Top]