Citation: |
[1] |
A. S. Ackleh, J. Carter, L. Cole, T. Nguyen, J. Monte and C. Pettit, Measuring and modeling the seasonal changes of an urban Green Treefrog (Hyla cinerea) population, Ecol. Modelling, 221 (2010), 281-289.doi: doi:10.1016/j.ecolmodel.2009.10.012. |
[2] |
A. S. Ackleh and K. Deng, A nonautonomous juvenile-adult model: Well-posedness and long-time behavior via a comparison principle, SIAM J. Appl. Math., 69 (2009), 1644-1661.doi: doi:10.1137/080723673. |
[3] |
R. Bellman and K. L. Cooke, "Differential-Difference Equations," Academic Press, New York, 1963. |
[4] |
J. E. Forde, "Delay Differential Equation Models in Mathematical Biology," Ph.D. Thesis, The University of Michigan, 2005. |
[5] |
L. Glass and M. C. Mackey, Pathological conditions resulting from instabilities in physiological control systems, Ann. New York Acad. Sci., 316 (1979), 214-235.doi: doi:10.1111/j.1749-6632.1979.tb29471.x. |
[6] |
K. Gopalsamy, M. R. S. Kulenovic and G. Ladas, Oscillations and global attractivity in respiratory dynamics, Dynam. Stability Systems, 4 (1989), 131-139. |
[7] |
K. Gopalsamy, M. R. S. Kulenovic and G. Ladas, Oscillations and global attractivity in models of haematopoiesis, J. Dynam. Differential Equations, 2 (1990), 117-132.doi: doi:10.1007/BF01057415. |
[8] |
M. S. Gunzenburger and J. Travis, Evaluating predation pressure on green treefrog larvae across a habitat gradient, Oecologia, 140 (2004), 422-429. |
[9] |
M. S. Gunzenburger and J. Travis, Effects of multiple predator species on green treefrog (Hyla cinerea) tadpoles, Canadian J. Zoology, 83 (2005), 996-1002.doi: doi:10.1139/z05-093. |
[10] |
W. S. C. Gurney, S. P. Blythe and R. M. Nisbet, Nicholson's blowflies revisited, Nature, 287 (1980), 17-21.doi: doi:10.1038/287017a0. |
[11] |
I. Gyori and G. Ladas, "Oscillation Theory of Delay Differential Equations with Applications," Oxford University Press, New York, 1991. |
[12] |
G. Karakostas, C. G. Philos and Y. G. Sficas, Stable steady state of some population models, J. Dynam. Differential Equations, 4 (1992), 161-190.doi: doi:10.1007/BF01048159. |
[13] |
T. Kostova, J. Li and M. Friedman, Two models for competition between age classes, Math. Biosci., 157 (1999), 65-89.doi: doi:10.1016/S0025-5564(98)10077-9. |
[14] |
Y. Kuang, Global attractivity and periodic solutions in delay-differential equations related to models in physiology and population biology, Japan J. Indust. Appl. Math., 9 (1992), 205-238.doi: doi:10.1007/BF03167566. |
[15] |
Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics," Mathematics in Science and Engineering, 191, Academic Press, Boston, 1993. |
[16] |
M. R. S. Kulenovic, G. Ladas and Y. G. Sficas, Global attractivity in population dynamics, Comput. Math. Appl., 18 (1989), 925-928.doi: doi:10.1016/0898-1221(89)90010-2. |
[17] |
I. Kubiaczyk and S. H. Saker, Oscillation and stability in nonlinear delay differential equations of population dynamics, Math. Comput. Modelling, 35 (2002), 295-301.doi: doi:10.1016/S0895-7177(01)00166-2. |
[18] |
M. C. Mackey and L. Glass, Oscillation and chaos in physiological control system, Science, 197 (1977), 287-289.doi: doi:10.1126/science.267326. |
[19] |
L. Pham, S. Boudreaux, S. Karhbet, B. Price, A.S. Ackleh, J. Carter and N. Pal, Population estimates of Hyla cinerea (Schneider) (H. cinerea) in an urban environment, Southeastern Naturalist, 6 (2007), 203-216.doi: doi:10.1656/1528-7092(2007)6[203:PEOHCS]2.0.CO;2. |
[20] |
A. L. Skubachevskii and H. O. Walther, On Floquet multipliers for slowly oscillating periodic solutions of nonlinear functional differential equations, Tr. Mosk. Mat. Obs., 64 (2003), 3-53. |
[21] |
A. L. Skubachevskii and H. O. Walther, On the Floquet multipliers of periodic solutions to non-linear functional differential equations, J. Dynam. Differential Equations, 18 (2006), 257-355.doi: doi:10.1007/s10884-006-9006-5. |
[22] |
H. O. Walther, "The 2-Dimensional Attractor of $x'(t)=-\mu x(t)+f(x(t-1))$," Mem. Amer. Math. Soc., 113, 1995. |
[23] |
J. Wei, Bifurcation analysis in a scalar delay differential equation, Nonlinearity, 20 (2007), 2483-2498.doi: doi:10.1088/0951-7715/20/11/002. |
[24] |
M. Wazewska-Czyzewska and A. Lasota, Mathematical problems of the dynamics of a system of red blood cells, Mat. Stos., 6 (1976), 23-40. |
[25] |
A. Zaghrout, A. Ammar and M. A. El-Sheikh, Oscillations and global attractivity in delay differential equations of population dynamics, Appl. Math. Comput., 77 (1996), 195-204.doi: doi:10.1016/S0096-3003(95)00213-8. |