2010, 7(4): 729-737. doi: 10.3934/mbe.2010.7.729

Stability of a delay equation arising from a juvenile-adult model

1. 

Department of Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana 70504-1010, United States

Received  May 2010 Revised  July 2010 Published  October 2010

We consider a delay equation that has been formulated from a juvenile-adult population model. We give respective conditions on the vital rates to ensure local stability of the positive equilibrium and global stability of the trivial equilibrium. We also show that under certain conditions the equation undergoes a Hopf bifurcation. We then study global asymptotic stability and present bifurcation diagrams for two special cases of the model.
Citation: Azmy S. Ackleh, Keng Deng. Stability of a delay equation arising from a juvenile-adult model. Mathematical Biosciences & Engineering, 2010, 7 (4) : 729-737. doi: 10.3934/mbe.2010.7.729
References:
[1]

A. S. Ackleh, J. Carter, L. Cole, T. Nguyen, J. Monte and C. Pettit, Measuring and modeling the seasonal changes of an urban Green Treefrog (Hyla cinerea) population,, Ecol. Modelling, 221 (2010), 281.  doi: doi:10.1016/j.ecolmodel.2009.10.012.  Google Scholar

[2]

A. S. Ackleh and K. Deng, A nonautonomous juvenile-adult model: Well-posedness and long-time behavior via a comparison principle,, SIAM J. Appl. Math., 69 (2009), 1644.  doi: doi:10.1137/080723673.  Google Scholar

[3]

R. Bellman and K. L. Cooke, "Differential-Difference Equations,", Academic Press, (1963).   Google Scholar

[4]

J. E. Forde, "Delay Differential Equation Models in Mathematical Biology,", Ph.D. Thesis, (2005).   Google Scholar

[5]

L. Glass and M. C. Mackey, Pathological conditions resulting from instabilities in physiological control systems,, Ann. New York Acad. Sci., 316 (1979), 214.  doi: doi:10.1111/j.1749-6632.1979.tb29471.x.  Google Scholar

[6]

K. Gopalsamy, M. R. S. Kulenovic and G. Ladas, Oscillations and global attractivity in respiratory dynamics,, Dynam. Stability Systems, 4 (1989), 131.   Google Scholar

[7]

K. Gopalsamy, M. R. S. Kulenovic and G. Ladas, Oscillations and global attractivity in models of haematopoiesis,, J. Dynam. Differential Equations, 2 (1990), 117.  doi: doi:10.1007/BF01057415.  Google Scholar

[8]

M. S. Gunzenburger and J. Travis, Evaluating predation pressure on green treefrog larvae across a habitat gradient,, Oecologia, 140 (2004), 422.   Google Scholar

[9]

M. S. Gunzenburger and J. Travis, Effects of multiple predator species on green treefrog (Hyla cinerea) tadpoles,, Canadian J. Zoology, 83 (2005), 996.  doi: doi:10.1139/z05-093.  Google Scholar

[10]

W. S. C. Gurney, S. P. Blythe and R. M. Nisbet, Nicholson's blowflies revisited,, Nature, 287 (1980), 17.  doi: doi:10.1038/287017a0.  Google Scholar

[11]

I. Gyori and G. Ladas, "Oscillation Theory of Delay Differential Equations with Applications,", Oxford University Press, (1991).   Google Scholar

[12]

G. Karakostas, C. G. Philos and Y. G. Sficas, Stable steady state of some population models,, J. Dynam. Differential Equations, 4 (1992), 161.  doi: doi:10.1007/BF01048159.  Google Scholar

[13]

T. Kostova, J. Li and M. Friedman, Two models for competition between age classes,, Math. Biosci., 157 (1999), 65.  doi: doi:10.1016/S0025-5564(98)10077-9.  Google Scholar

[14]

Y. Kuang, Global attractivity and periodic solutions in delay-differential equations related to models in physiology and population biology,, Japan J. Indust. Appl. Math., 9 (1992), 205.  doi: doi:10.1007/BF03167566.  Google Scholar

[15]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,", Mathematics in Science and Engineering, 191 (1993).   Google Scholar

[16]

M. R. S. Kulenovic, G. Ladas and Y. G. Sficas, Global attractivity in population dynamics,, Comput. Math. Appl., 18 (1989), 925.  doi: doi:10.1016/0898-1221(89)90010-2.  Google Scholar

[17]

I. Kubiaczyk and S. H. Saker, Oscillation and stability in nonlinear delay differential equations of population dynamics,, Math. Comput. Modelling, 35 (2002), 295.  doi: doi:10.1016/S0895-7177(01)00166-2.  Google Scholar

[18]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control system,, Science, 197 (1977), 287.  doi: doi:10.1126/science.267326.  Google Scholar

[19]

L. Pham, S. Boudreaux, S. Karhbet, B. Price, A.S. Ackleh, J. Carter and N. Pal, Population estimates of Hyla cinerea (Schneider) (H. cinerea) in an urban environment,, Southeastern Naturalist, 6 (2007), 203.  doi: doi:10.1656/1528-7092(2007)6[203:PEOHCS]2.0.CO;2.  Google Scholar

[20]

A. L. Skubachevskii and H. O. Walther, On Floquet multipliers for slowly oscillating periodic solutions of nonlinear functional differential equations,, Tr. Mosk. Mat. Obs., 64 (2003), 3.   Google Scholar

[21]

A. L. Skubachevskii and H. O. Walther, On the Floquet multipliers of periodic solutions to non-linear functional differential equations,, J. Dynam. Differential Equations, 18 (2006), 257.  doi: doi:10.1007/s10884-006-9006-5.  Google Scholar

[22]

H. O. Walther, "The 2-Dimensional Attractor of $x'(t)=-\mu x(t)+f(x(t-1))$,", Mem. Amer. Math. Soc., 113 (1995).   Google Scholar

[23]

J. Wei, Bifurcation analysis in a scalar delay differential equation,, Nonlinearity, 20 (2007), 2483.  doi: doi:10.1088/0951-7715/20/11/002.  Google Scholar

[24]

M. Wazewska-Czyzewska and A. Lasota, Mathematical problems of the dynamics of a system of red blood cells,, Mat. Stos., 6 (1976), 23.   Google Scholar

[25]

A. Zaghrout, A. Ammar and M. A. El-Sheikh, Oscillations and global attractivity in delay differential equations of population dynamics,, Appl. Math. Comput., 77 (1996), 195.  doi: doi:10.1016/S0096-3003(95)00213-8.  Google Scholar

show all references

References:
[1]

A. S. Ackleh, J. Carter, L. Cole, T. Nguyen, J. Monte and C. Pettit, Measuring and modeling the seasonal changes of an urban Green Treefrog (Hyla cinerea) population,, Ecol. Modelling, 221 (2010), 281.  doi: doi:10.1016/j.ecolmodel.2009.10.012.  Google Scholar

[2]

A. S. Ackleh and K. Deng, A nonautonomous juvenile-adult model: Well-posedness and long-time behavior via a comparison principle,, SIAM J. Appl. Math., 69 (2009), 1644.  doi: doi:10.1137/080723673.  Google Scholar

[3]

R. Bellman and K. L. Cooke, "Differential-Difference Equations,", Academic Press, (1963).   Google Scholar

[4]

J. E. Forde, "Delay Differential Equation Models in Mathematical Biology,", Ph.D. Thesis, (2005).   Google Scholar

[5]

L. Glass and M. C. Mackey, Pathological conditions resulting from instabilities in physiological control systems,, Ann. New York Acad. Sci., 316 (1979), 214.  doi: doi:10.1111/j.1749-6632.1979.tb29471.x.  Google Scholar

[6]

K. Gopalsamy, M. R. S. Kulenovic and G. Ladas, Oscillations and global attractivity in respiratory dynamics,, Dynam. Stability Systems, 4 (1989), 131.   Google Scholar

[7]

K. Gopalsamy, M. R. S. Kulenovic and G. Ladas, Oscillations and global attractivity in models of haematopoiesis,, J. Dynam. Differential Equations, 2 (1990), 117.  doi: doi:10.1007/BF01057415.  Google Scholar

[8]

M. S. Gunzenburger and J. Travis, Evaluating predation pressure on green treefrog larvae across a habitat gradient,, Oecologia, 140 (2004), 422.   Google Scholar

[9]

M. S. Gunzenburger and J. Travis, Effects of multiple predator species on green treefrog (Hyla cinerea) tadpoles,, Canadian J. Zoology, 83 (2005), 996.  doi: doi:10.1139/z05-093.  Google Scholar

[10]

W. S. C. Gurney, S. P. Blythe and R. M. Nisbet, Nicholson's blowflies revisited,, Nature, 287 (1980), 17.  doi: doi:10.1038/287017a0.  Google Scholar

[11]

I. Gyori and G. Ladas, "Oscillation Theory of Delay Differential Equations with Applications,", Oxford University Press, (1991).   Google Scholar

[12]

G. Karakostas, C. G. Philos and Y. G. Sficas, Stable steady state of some population models,, J. Dynam. Differential Equations, 4 (1992), 161.  doi: doi:10.1007/BF01048159.  Google Scholar

[13]

T. Kostova, J. Li and M. Friedman, Two models for competition between age classes,, Math. Biosci., 157 (1999), 65.  doi: doi:10.1016/S0025-5564(98)10077-9.  Google Scholar

[14]

Y. Kuang, Global attractivity and periodic solutions in delay-differential equations related to models in physiology and population biology,, Japan J. Indust. Appl. Math., 9 (1992), 205.  doi: doi:10.1007/BF03167566.  Google Scholar

[15]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,", Mathematics in Science and Engineering, 191 (1993).   Google Scholar

[16]

M. R. S. Kulenovic, G. Ladas and Y. G. Sficas, Global attractivity in population dynamics,, Comput. Math. Appl., 18 (1989), 925.  doi: doi:10.1016/0898-1221(89)90010-2.  Google Scholar

[17]

I. Kubiaczyk and S. H. Saker, Oscillation and stability in nonlinear delay differential equations of population dynamics,, Math. Comput. Modelling, 35 (2002), 295.  doi: doi:10.1016/S0895-7177(01)00166-2.  Google Scholar

[18]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control system,, Science, 197 (1977), 287.  doi: doi:10.1126/science.267326.  Google Scholar

[19]

L. Pham, S. Boudreaux, S. Karhbet, B. Price, A.S. Ackleh, J. Carter and N. Pal, Population estimates of Hyla cinerea (Schneider) (H. cinerea) in an urban environment,, Southeastern Naturalist, 6 (2007), 203.  doi: doi:10.1656/1528-7092(2007)6[203:PEOHCS]2.0.CO;2.  Google Scholar

[20]

A. L. Skubachevskii and H. O. Walther, On Floquet multipliers for slowly oscillating periodic solutions of nonlinear functional differential equations,, Tr. Mosk. Mat. Obs., 64 (2003), 3.   Google Scholar

[21]

A. L. Skubachevskii and H. O. Walther, On the Floquet multipliers of periodic solutions to non-linear functional differential equations,, J. Dynam. Differential Equations, 18 (2006), 257.  doi: doi:10.1007/s10884-006-9006-5.  Google Scholar

[22]

H. O. Walther, "The 2-Dimensional Attractor of $x'(t)=-\mu x(t)+f(x(t-1))$,", Mem. Amer. Math. Soc., 113 (1995).   Google Scholar

[23]

J. Wei, Bifurcation analysis in a scalar delay differential equation,, Nonlinearity, 20 (2007), 2483.  doi: doi:10.1088/0951-7715/20/11/002.  Google Scholar

[24]

M. Wazewska-Czyzewska and A. Lasota, Mathematical problems of the dynamics of a system of red blood cells,, Mat. Stos., 6 (1976), 23.   Google Scholar

[25]

A. Zaghrout, A. Ammar and M. A. El-Sheikh, Oscillations and global attractivity in delay differential equations of population dynamics,, Appl. Math. Comput., 77 (1996), 195.  doi: doi:10.1016/S0096-3003(95)00213-8.  Google Scholar

[1]

Xianlong Fu, Dongmei Zhu. Stability analysis for a size-structured juvenile-adult population model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 391-417. doi: 10.3934/dcdsb.2014.19.391

[2]

J. M. Cushing, Simon Maccracken Stump. Darwinian dynamics of a juvenile-adult model. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1017-1044. doi: 10.3934/mbe.2013.10.1017

[3]

Azmy S. Ackleh, Keng Deng, Qihua Huang. Difference approximation for an amphibian juvenile-adult dispersal mode. Conference Publications, 2011, 2011 (Special) : 1-12. doi: 10.3934/proc.2011.2011.1

[4]

József Z. Farkas, Thomas Hagen. Asymptotic behavior of size-structured populations via juvenile-adult interaction. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 249-266. doi: 10.3934/dcdsb.2008.9.249

[5]

Jacopo De Simoi. Stability and instability results in a model of Fermi acceleration. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 719-750. doi: 10.3934/dcds.2009.25.719

[6]

Reinhard Racke. Instability of coupled systems with delay. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1753-1773. doi: 10.3934/cpaa.2012.11.1753

[7]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[8]

Saroj P. Pradhan, Janos Turi. Parameter dependent stability/instability in a human respiratory control system model. Conference Publications, 2013, 2013 (special) : 643-652. doi: 10.3934/proc.2013.2013.643

[9]

Yaodan Huang, Zhengce Zhang, Bei Hu. Bifurcation from stability to instability for a free boundary tumor model with angiogenesis. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2473-2510. doi: 10.3934/dcds.2019105

[10]

Eugen Stumpf. On a delay differential equation arising from a car-following model: Wavefront solutions with constant-speed and their stability. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3317-3340. doi: 10.3934/dcdsb.2017139

[11]

Zhihua Liu, Pierre Magal. Functional differential equation with infinite delay in a space of exponentially bounded and uniformly continuous functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019227

[12]

Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689

[13]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[14]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[15]

C. Connell McCluskey. Global stability of an $SIR$ epidemic model with delay and general nonlinear incidence. Mathematical Biosciences & Engineering, 2010, 7 (4) : 837-850. doi: 10.3934/mbe.2010.7.837

[16]

Leonid Shaikhet. Stability of equilibriums of stochastically perturbed delay differential neoclassical growth model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1565-1573. doi: 10.3934/dcdsb.2017075

[17]

C. Connell McCluskey. Global stability for an SEIR epidemiological model with varying infectivity and infinite delay. Mathematical Biosciences & Engineering, 2009, 6 (3) : 603-610. doi: 10.3934/mbe.2009.6.603

[18]

Yincui Yan, Wendi Wang. Global stability of a five-dimensional model with immune responses and delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 401-416. doi: 10.3934/dcdsb.2012.17.401

[19]

Takayoshi Ogawa, Hiroshi Wakui. Stability and instability of solutions to the drift-diffusion system. Evolution Equations & Control Theory, 2017, 6 (4) : 587-597. doi: 10.3934/eect.2017029

[20]

C. Connell McCluskey. Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes. Mathematical Biosciences & Engineering, 2012, 9 (4) : 819-841. doi: 10.3934/mbe.2012.9.819

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]