2010, 7(4): 729-737. doi: 10.3934/mbe.2010.7.729

Stability of a delay equation arising from a juvenile-adult model

1. 

Department of Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana 70504-1010, United States

Received  May 2010 Revised  July 2010 Published  October 2010

We consider a delay equation that has been formulated from a juvenile-adult population model. We give respective conditions on the vital rates to ensure local stability of the positive equilibrium and global stability of the trivial equilibrium. We also show that under certain conditions the equation undergoes a Hopf bifurcation. We then study global asymptotic stability and present bifurcation diagrams for two special cases of the model.
Citation: Azmy S. Ackleh, Keng Deng. Stability of a delay equation arising from a juvenile-adult model. Mathematical Biosciences & Engineering, 2010, 7 (4) : 729-737. doi: 10.3934/mbe.2010.7.729
References:
[1]

A. S. Ackleh, J. Carter, L. Cole, T. Nguyen, J. Monte and C. Pettit, Measuring and modeling the seasonal changes of an urban Green Treefrog (Hyla cinerea) population,, Ecol. Modelling, 221 (2010), 281.  doi: doi:10.1016/j.ecolmodel.2009.10.012.  Google Scholar

[2]

A. S. Ackleh and K. Deng, A nonautonomous juvenile-adult model: Well-posedness and long-time behavior via a comparison principle,, SIAM J. Appl. Math., 69 (2009), 1644.  doi: doi:10.1137/080723673.  Google Scholar

[3]

R. Bellman and K. L. Cooke, "Differential-Difference Equations,", Academic Press, (1963).   Google Scholar

[4]

J. E. Forde, "Delay Differential Equation Models in Mathematical Biology,", Ph.D. Thesis, (2005).   Google Scholar

[5]

L. Glass and M. C. Mackey, Pathological conditions resulting from instabilities in physiological control systems,, Ann. New York Acad. Sci., 316 (1979), 214.  doi: doi:10.1111/j.1749-6632.1979.tb29471.x.  Google Scholar

[6]

K. Gopalsamy, M. R. S. Kulenovic and G. Ladas, Oscillations and global attractivity in respiratory dynamics,, Dynam. Stability Systems, 4 (1989), 131.   Google Scholar

[7]

K. Gopalsamy, M. R. S. Kulenovic and G. Ladas, Oscillations and global attractivity in models of haematopoiesis,, J. Dynam. Differential Equations, 2 (1990), 117.  doi: doi:10.1007/BF01057415.  Google Scholar

[8]

M. S. Gunzenburger and J. Travis, Evaluating predation pressure on green treefrog larvae across a habitat gradient,, Oecologia, 140 (2004), 422.   Google Scholar

[9]

M. S. Gunzenburger and J. Travis, Effects of multiple predator species on green treefrog (Hyla cinerea) tadpoles,, Canadian J. Zoology, 83 (2005), 996.  doi: doi:10.1139/z05-093.  Google Scholar

[10]

W. S. C. Gurney, S. P. Blythe and R. M. Nisbet, Nicholson's blowflies revisited,, Nature, 287 (1980), 17.  doi: doi:10.1038/287017a0.  Google Scholar

[11]

I. Gyori and G. Ladas, "Oscillation Theory of Delay Differential Equations with Applications,", Oxford University Press, (1991).   Google Scholar

[12]

G. Karakostas, C. G. Philos and Y. G. Sficas, Stable steady state of some population models,, J. Dynam. Differential Equations, 4 (1992), 161.  doi: doi:10.1007/BF01048159.  Google Scholar

[13]

T. Kostova, J. Li and M. Friedman, Two models for competition between age classes,, Math. Biosci., 157 (1999), 65.  doi: doi:10.1016/S0025-5564(98)10077-9.  Google Scholar

[14]

Y. Kuang, Global attractivity and periodic solutions in delay-differential equations related to models in physiology and population biology,, Japan J. Indust. Appl. Math., 9 (1992), 205.  doi: doi:10.1007/BF03167566.  Google Scholar

[15]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,", Mathematics in Science and Engineering, 191 (1993).   Google Scholar

[16]

M. R. S. Kulenovic, G. Ladas and Y. G. Sficas, Global attractivity in population dynamics,, Comput. Math. Appl., 18 (1989), 925.  doi: doi:10.1016/0898-1221(89)90010-2.  Google Scholar

[17]

I. Kubiaczyk and S. H. Saker, Oscillation and stability in nonlinear delay differential equations of population dynamics,, Math. Comput. Modelling, 35 (2002), 295.  doi: doi:10.1016/S0895-7177(01)00166-2.  Google Scholar

[18]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control system,, Science, 197 (1977), 287.  doi: doi:10.1126/science.267326.  Google Scholar

[19]

L. Pham, S. Boudreaux, S. Karhbet, B. Price, A.S. Ackleh, J. Carter and N. Pal, Population estimates of Hyla cinerea (Schneider) (H. cinerea) in an urban environment,, Southeastern Naturalist, 6 (2007), 203.  doi: doi:10.1656/1528-7092(2007)6[203:PEOHCS]2.0.CO;2.  Google Scholar

[20]

A. L. Skubachevskii and H. O. Walther, On Floquet multipliers for slowly oscillating periodic solutions of nonlinear functional differential equations,, Tr. Mosk. Mat. Obs., 64 (2003), 3.   Google Scholar

[21]

A. L. Skubachevskii and H. O. Walther, On the Floquet multipliers of periodic solutions to non-linear functional differential equations,, J. Dynam. Differential Equations, 18 (2006), 257.  doi: doi:10.1007/s10884-006-9006-5.  Google Scholar

[22]

H. O. Walther, "The 2-Dimensional Attractor of $x'(t)=-\mu x(t)+f(x(t-1))$,", Mem. Amer. Math. Soc., 113 (1995).   Google Scholar

[23]

J. Wei, Bifurcation analysis in a scalar delay differential equation,, Nonlinearity, 20 (2007), 2483.  doi: doi:10.1088/0951-7715/20/11/002.  Google Scholar

[24]

M. Wazewska-Czyzewska and A. Lasota, Mathematical problems of the dynamics of a system of red blood cells,, Mat. Stos., 6 (1976), 23.   Google Scholar

[25]

A. Zaghrout, A. Ammar and M. A. El-Sheikh, Oscillations and global attractivity in delay differential equations of population dynamics,, Appl. Math. Comput., 77 (1996), 195.  doi: doi:10.1016/S0096-3003(95)00213-8.  Google Scholar

show all references

References:
[1]

A. S. Ackleh, J. Carter, L. Cole, T. Nguyen, J. Monte and C. Pettit, Measuring and modeling the seasonal changes of an urban Green Treefrog (Hyla cinerea) population,, Ecol. Modelling, 221 (2010), 281.  doi: doi:10.1016/j.ecolmodel.2009.10.012.  Google Scholar

[2]

A. S. Ackleh and K. Deng, A nonautonomous juvenile-adult model: Well-posedness and long-time behavior via a comparison principle,, SIAM J. Appl. Math., 69 (2009), 1644.  doi: doi:10.1137/080723673.  Google Scholar

[3]

R. Bellman and K. L. Cooke, "Differential-Difference Equations,", Academic Press, (1963).   Google Scholar

[4]

J. E. Forde, "Delay Differential Equation Models in Mathematical Biology,", Ph.D. Thesis, (2005).   Google Scholar

[5]

L. Glass and M. C. Mackey, Pathological conditions resulting from instabilities in physiological control systems,, Ann. New York Acad. Sci., 316 (1979), 214.  doi: doi:10.1111/j.1749-6632.1979.tb29471.x.  Google Scholar

[6]

K. Gopalsamy, M. R. S. Kulenovic and G. Ladas, Oscillations and global attractivity in respiratory dynamics,, Dynam. Stability Systems, 4 (1989), 131.   Google Scholar

[7]

K. Gopalsamy, M. R. S. Kulenovic and G. Ladas, Oscillations and global attractivity in models of haematopoiesis,, J. Dynam. Differential Equations, 2 (1990), 117.  doi: doi:10.1007/BF01057415.  Google Scholar

[8]

M. S. Gunzenburger and J. Travis, Evaluating predation pressure on green treefrog larvae across a habitat gradient,, Oecologia, 140 (2004), 422.   Google Scholar

[9]

M. S. Gunzenburger and J. Travis, Effects of multiple predator species on green treefrog (Hyla cinerea) tadpoles,, Canadian J. Zoology, 83 (2005), 996.  doi: doi:10.1139/z05-093.  Google Scholar

[10]

W. S. C. Gurney, S. P. Blythe and R. M. Nisbet, Nicholson's blowflies revisited,, Nature, 287 (1980), 17.  doi: doi:10.1038/287017a0.  Google Scholar

[11]

I. Gyori and G. Ladas, "Oscillation Theory of Delay Differential Equations with Applications,", Oxford University Press, (1991).   Google Scholar

[12]

G. Karakostas, C. G. Philos and Y. G. Sficas, Stable steady state of some population models,, J. Dynam. Differential Equations, 4 (1992), 161.  doi: doi:10.1007/BF01048159.  Google Scholar

[13]

T. Kostova, J. Li and M. Friedman, Two models for competition between age classes,, Math. Biosci., 157 (1999), 65.  doi: doi:10.1016/S0025-5564(98)10077-9.  Google Scholar

[14]

Y. Kuang, Global attractivity and periodic solutions in delay-differential equations related to models in physiology and population biology,, Japan J. Indust. Appl. Math., 9 (1992), 205.  doi: doi:10.1007/BF03167566.  Google Scholar

[15]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,", Mathematics in Science and Engineering, 191 (1993).   Google Scholar

[16]

M. R. S. Kulenovic, G. Ladas and Y. G. Sficas, Global attractivity in population dynamics,, Comput. Math. Appl., 18 (1989), 925.  doi: doi:10.1016/0898-1221(89)90010-2.  Google Scholar

[17]

I. Kubiaczyk and S. H. Saker, Oscillation and stability in nonlinear delay differential equations of population dynamics,, Math. Comput. Modelling, 35 (2002), 295.  doi: doi:10.1016/S0895-7177(01)00166-2.  Google Scholar

[18]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control system,, Science, 197 (1977), 287.  doi: doi:10.1126/science.267326.  Google Scholar

[19]

L. Pham, S. Boudreaux, S. Karhbet, B. Price, A.S. Ackleh, J. Carter and N. Pal, Population estimates of Hyla cinerea (Schneider) (H. cinerea) in an urban environment,, Southeastern Naturalist, 6 (2007), 203.  doi: doi:10.1656/1528-7092(2007)6[203:PEOHCS]2.0.CO;2.  Google Scholar

[20]

A. L. Skubachevskii and H. O. Walther, On Floquet multipliers for slowly oscillating periodic solutions of nonlinear functional differential equations,, Tr. Mosk. Mat. Obs., 64 (2003), 3.   Google Scholar

[21]

A. L. Skubachevskii and H. O. Walther, On the Floquet multipliers of periodic solutions to non-linear functional differential equations,, J. Dynam. Differential Equations, 18 (2006), 257.  doi: doi:10.1007/s10884-006-9006-5.  Google Scholar

[22]

H. O. Walther, "The 2-Dimensional Attractor of $x'(t)=-\mu x(t)+f(x(t-1))$,", Mem. Amer. Math. Soc., 113 (1995).   Google Scholar

[23]

J. Wei, Bifurcation analysis in a scalar delay differential equation,, Nonlinearity, 20 (2007), 2483.  doi: doi:10.1088/0951-7715/20/11/002.  Google Scholar

[24]

M. Wazewska-Czyzewska and A. Lasota, Mathematical problems of the dynamics of a system of red blood cells,, Mat. Stos., 6 (1976), 23.   Google Scholar

[25]

A. Zaghrout, A. Ammar and M. A. El-Sheikh, Oscillations and global attractivity in delay differential equations of population dynamics,, Appl. Math. Comput., 77 (1996), 195.  doi: doi:10.1016/S0096-3003(95)00213-8.  Google Scholar

[1]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[2]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[3]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[4]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[5]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[6]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[7]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[8]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[9]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[10]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[11]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[12]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[13]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[14]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[15]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[16]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[17]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[18]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[19]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[20]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]