2010, 7(4): 739-763. doi: 10.3934/mbe.2010.7.739

Using nonlinear model predictive control to find optimal therapeutic strategies to modulate inflammation

1. 

Mathematical Biosciences Institute, The Ohio State University, 1735 Neil Ave, 377 Jennings Hall, Columbus, OH 43210, United States

2. 

Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, PA 15260, United States

3. 

Department of Critical Care Medicine, University of Pittsburgh Medical Center, 3550 Terrace St, Pittsburgh, PA 15261, United States

Received  March 2010 Revised  May 2010 Published  October 2010

Modulation of the inflammatory response has become a key focal point in the treatment of critically ill patients. Much of the computational work in this emerging field has been carried out with the goal of unraveling the primary drivers, interconnections, and dynamics of systemic inflammation. To translate these theoretical efforts into clinical approaches, the proper biological targets and specific manipulations must be identified. In this work, we pursue this goal by implementing a nonlinear model predictive control (NMPC) algorithm in the context of a reduced computational model of the acute inflammatory response to severe infection. In our simulations, NMPC successfully identifies patient-specific therapeutic strategies, based on simulated observations of clinically accessible inflammatory mediators, which outperform standardized therapies, even when the latter are derived using a general optimization routine. These results imply that a combination of computational modeling and NMPC may be of practical use in suggesting novel immuno-modulatory strategies for the treatment of intensive care patients.
Citation: Judy Day, Jonathan Rubin, Gilles Clermont. Using nonlinear model predictive control to find optimal therapeutic strategies to modulate inflammation. Mathematical Biosciences & Engineering, 2010, 7 (4) : 739-763. doi: 10.3934/mbe.2010.7.739
References:
[1]

D. Annane, V. Sebille, C. Charpentier, P. E. Bollaert, B. Francois, J. M. Korach, G. Capellier, Y. Cohen, E. Azoulay, G. Troche, P. Chaumet-Riffaut and E. Bellissant, Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock,, JAMA, 288 (2002), 862.   Google Scholar

[2]

R. C. Bone, The search for a magic bullet to fight sepsis,, JAMA, 269 (1993), 2266.   Google Scholar

[3]

R. C. Bone, Why sepsis trials fail,, JAMA, 276 (1996), 565.   Google Scholar

[4]

R. C. Bone, Immunologic dissonance: A continuing evolution in our understanding of the systemic inflammatory response syndrome (SIRS) and the multiple organ dysfunction syndrome (MODS),, Ann. Intern. Med., 125 (1996), 680.   Google Scholar

[5]

C. C. Chow, G. Clermont, R. Kumar, C. Lagoa, Z. Tawadrous, D. Gallo, B. Betten, J. Bartels, G. Constantine, M. P. Fink, T. R. Billiar and Y. Vodovotz, The acute inflammatory response in diverse shock states,, Shock, 24 (2005), 74.  doi: doi:10.1097/01.shk.0000168526.97716.f3.  Google Scholar

[6]

A. S. Cross, S. M. Opal, K. Bhattacharjee, S. T. Donta, P. N. Peduzzi, E. Furer, J. U. Que and S. J. Cryz, Immunotherapy of sepsis: Flawed concept or faulty implementation?,, Vaccine, 17 (Suppl. 3) (1999).  doi: doi:10.1016/S0264-410X(99)00230-3.  Google Scholar

[7]

A. S. Cross and S. M. Opal, A new paradigm for the treatment of sepsis: Is it time to consider combination therapy,, Ann. Intern. Med., 138 (2003), 502.   Google Scholar

[8]

S. Daun, J. Rubin, Y. V. Vodovotz, A. Roy, R. S. Parker and G. Clermont, An ensemble of models of the acute inflammatory response to bacterial lipopolysaccharide in rats: Results from parameter space reduction,, J. Theor. Biol., 253 (2008), 843.  doi: doi:10.1016/j.jtbi.2008.04.033.  Google Scholar

[9]

J. Day, J. Rubin, Y. Vodovotz, C. C. Chow, A. Reynolds and G. Clermont, A reduced mathematical model of the acute inflammatory response II. Capturing scenarios of repeated endotoxin administration,, J. Theor. Biol., 242 (2006), 237.  doi: doi:10.1016/j.jtbi.2006.02.015.  Google Scholar

[10]

R. P. Dellinger, M. M. Levy, J. M. Carlet, J. Bion, M. M. Parker, R. Jaeschke, K. Reinhart, D. C. Angus, C. Brun-Buisson, R. Beale, T. Calandra, J. F. Dhainaut, H. Gerlach, M. Harvey, J. J. Marini, J. Marshall, M. Ranieri, G. Ramsay, J. Sevransky, B. T. Thompson, S. Townsend, J. S. Vender, J. L. Zimmerman and J. L. Vincent, Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008,, Crit. Care Med., 36 (2008), 296.  doi: doi:10.1097/01.CCM.0000298158.12101.41.  Google Scholar

[11]

F. Doyle, L. Jovanovic, D. Seborg, R. S. Parker, B. W. Bequette, A. M. Jeffrey, X. Xia, I. K. Craig and T. McAvoy, A tutorial on biomedical process control,, J. Proc. Con., 17 (2007), 571.  doi: doi:10.1016/j.jprocont.2007.01.012.  Google Scholar

[12]

J. A. Florian, Jr., J. L. Eiseman and R. S. Parker, Nonlinear model predictive control for dosing daily anticancer agents using a novel saturating-rate cell-cycle model,, Comput. Biol. Med., 38 (2008), 339.  doi: doi:10.1016/j.compbiomed.2007.12.003.  Google Scholar

[13]

J. Klastersky and R. Capel, Adreno-corticosteroids in the treatment of bacterial sepsis: A double-blind study with pharmacological doses,, Antimicrobial Agents Chemother., 10 (1970), 175.   Google Scholar

[14]

R. Kumar, G. Clermont, Y. Vodovotz and C. C. Chow, The dynamics of acute inflammation,, J. Theor. Biol., 230 (2004), 145.  doi: doi:10.1016/j.jtbi.2004.04.044.  Google Scholar

[15]

M. M. Levy, M. P. Fink, J. C. Marshall, E. Abraham, D. Angus, D. Cook, J. Cohen, S. M. Opal, J. L. Vincent and G. Ramsay, 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference,, Crit. Care Med., 31 (2003), 250.  doi: doi:10.1097/01.CCM.0000050454.01978.3B.  Google Scholar

[16]

D. Lipiner-Friedman, C. L. Sprung, P. F. Laterre, Y. Weiss, S. V. Goodman, M. Vogeser, J. Briegel, D. Keh, M. Singer, R. Moreno, E. Bellissant and D. Annane, Adrenal function in sepsis: The retrospective Corticus cohort study,, Crit. Care Med., 35 (2007), 1012.  doi: doi:10.1097/01.CCM.0000259465.92018.6E.  Google Scholar

[17]

J. C. Marshall, E. Deitch, L. L. Moldawer, S. Opal, H. Redl and P. T. van Der, Preclinical models of shock and sepsis: What can they tell us?,, Shock, 24 (Suppl. 1) (2005), 1.  doi: doi:10.1097/01.shk.0000191383.34066.4b.  Google Scholar

[18]

B. Ogunnaike and W. Ray, "Process Dynamics, Modeling, and Control,", Oxford University Press, (1994).   Google Scholar

[19]

R. S. Parker, F. J. Doyle, III and N. A. Peppas, The intravenous route to blood glucose control,, IEEE Eng. Med. Biol. Mag., 20 (2001), 65.  doi: doi:10.1109/51.897829.  Google Scholar

[20]

A. M. Reynolds, J. Rubin, G. Clermont, J. Day, Y. Vodovotz and B. Ermentrout, A reduced mathematical model of the acute inflammatory response: I Derivation of the model and analysis of anti-inflammation,, J. Theor. Biol., 242 (2006), 220.  doi: doi:10.1016/j.jtbi.2006.02.016.  Google Scholar

[21]

Y. Vodovotz, C. C. Chow, J. Bartels, C. Lagoa, J. M. Prince, R. M. Levy, R. Kumar, J. Day, J. Rubin, G. Constantine, T. R. Billiar, M. P. Fink and G. Clermont, In silico models of acute inflammation in animals,, Shock, 26 (2006), 235.  doi: doi:10.1097/01.shk.0000225413.13866.fo.  Google Scholar

[22]

H. D. Volk, P. Reinke and W. D. Docke, Clinical aspects: From systemic inflammation to 'immunoparalysis',, Chem. Immunol., 74 (2000), 162.  doi: doi:10.1159/000058753.  Google Scholar

show all references

References:
[1]

D. Annane, V. Sebille, C. Charpentier, P. E. Bollaert, B. Francois, J. M. Korach, G. Capellier, Y. Cohen, E. Azoulay, G. Troche, P. Chaumet-Riffaut and E. Bellissant, Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock,, JAMA, 288 (2002), 862.   Google Scholar

[2]

R. C. Bone, The search for a magic bullet to fight sepsis,, JAMA, 269 (1993), 2266.   Google Scholar

[3]

R. C. Bone, Why sepsis trials fail,, JAMA, 276 (1996), 565.   Google Scholar

[4]

R. C. Bone, Immunologic dissonance: A continuing evolution in our understanding of the systemic inflammatory response syndrome (SIRS) and the multiple organ dysfunction syndrome (MODS),, Ann. Intern. Med., 125 (1996), 680.   Google Scholar

[5]

C. C. Chow, G. Clermont, R. Kumar, C. Lagoa, Z. Tawadrous, D. Gallo, B. Betten, J. Bartels, G. Constantine, M. P. Fink, T. R. Billiar and Y. Vodovotz, The acute inflammatory response in diverse shock states,, Shock, 24 (2005), 74.  doi: doi:10.1097/01.shk.0000168526.97716.f3.  Google Scholar

[6]

A. S. Cross, S. M. Opal, K. Bhattacharjee, S. T. Donta, P. N. Peduzzi, E. Furer, J. U. Que and S. J. Cryz, Immunotherapy of sepsis: Flawed concept or faulty implementation?,, Vaccine, 17 (Suppl. 3) (1999).  doi: doi:10.1016/S0264-410X(99)00230-3.  Google Scholar

[7]

A. S. Cross and S. M. Opal, A new paradigm for the treatment of sepsis: Is it time to consider combination therapy,, Ann. Intern. Med., 138 (2003), 502.   Google Scholar

[8]

S. Daun, J. Rubin, Y. V. Vodovotz, A. Roy, R. S. Parker and G. Clermont, An ensemble of models of the acute inflammatory response to bacterial lipopolysaccharide in rats: Results from parameter space reduction,, J. Theor. Biol., 253 (2008), 843.  doi: doi:10.1016/j.jtbi.2008.04.033.  Google Scholar

[9]

J. Day, J. Rubin, Y. Vodovotz, C. C. Chow, A. Reynolds and G. Clermont, A reduced mathematical model of the acute inflammatory response II. Capturing scenarios of repeated endotoxin administration,, J. Theor. Biol., 242 (2006), 237.  doi: doi:10.1016/j.jtbi.2006.02.015.  Google Scholar

[10]

R. P. Dellinger, M. M. Levy, J. M. Carlet, J. Bion, M. M. Parker, R. Jaeschke, K. Reinhart, D. C. Angus, C. Brun-Buisson, R. Beale, T. Calandra, J. F. Dhainaut, H. Gerlach, M. Harvey, J. J. Marini, J. Marshall, M. Ranieri, G. Ramsay, J. Sevransky, B. T. Thompson, S. Townsend, J. S. Vender, J. L. Zimmerman and J. L. Vincent, Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008,, Crit. Care Med., 36 (2008), 296.  doi: doi:10.1097/01.CCM.0000298158.12101.41.  Google Scholar

[11]

F. Doyle, L. Jovanovic, D. Seborg, R. S. Parker, B. W. Bequette, A. M. Jeffrey, X. Xia, I. K. Craig and T. McAvoy, A tutorial on biomedical process control,, J. Proc. Con., 17 (2007), 571.  doi: doi:10.1016/j.jprocont.2007.01.012.  Google Scholar

[12]

J. A. Florian, Jr., J. L. Eiseman and R. S. Parker, Nonlinear model predictive control for dosing daily anticancer agents using a novel saturating-rate cell-cycle model,, Comput. Biol. Med., 38 (2008), 339.  doi: doi:10.1016/j.compbiomed.2007.12.003.  Google Scholar

[13]

J. Klastersky and R. Capel, Adreno-corticosteroids in the treatment of bacterial sepsis: A double-blind study with pharmacological doses,, Antimicrobial Agents Chemother., 10 (1970), 175.   Google Scholar

[14]

R. Kumar, G. Clermont, Y. Vodovotz and C. C. Chow, The dynamics of acute inflammation,, J. Theor. Biol., 230 (2004), 145.  doi: doi:10.1016/j.jtbi.2004.04.044.  Google Scholar

[15]

M. M. Levy, M. P. Fink, J. C. Marshall, E. Abraham, D. Angus, D. Cook, J. Cohen, S. M. Opal, J. L. Vincent and G. Ramsay, 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference,, Crit. Care Med., 31 (2003), 250.  doi: doi:10.1097/01.CCM.0000050454.01978.3B.  Google Scholar

[16]

D. Lipiner-Friedman, C. L. Sprung, P. F. Laterre, Y. Weiss, S. V. Goodman, M. Vogeser, J. Briegel, D. Keh, M. Singer, R. Moreno, E. Bellissant and D. Annane, Adrenal function in sepsis: The retrospective Corticus cohort study,, Crit. Care Med., 35 (2007), 1012.  doi: doi:10.1097/01.CCM.0000259465.92018.6E.  Google Scholar

[17]

J. C. Marshall, E. Deitch, L. L. Moldawer, S. Opal, H. Redl and P. T. van Der, Preclinical models of shock and sepsis: What can they tell us?,, Shock, 24 (Suppl. 1) (2005), 1.  doi: doi:10.1097/01.shk.0000191383.34066.4b.  Google Scholar

[18]

B. Ogunnaike and W. Ray, "Process Dynamics, Modeling, and Control,", Oxford University Press, (1994).   Google Scholar

[19]

R. S. Parker, F. J. Doyle, III and N. A. Peppas, The intravenous route to blood glucose control,, IEEE Eng. Med. Biol. Mag., 20 (2001), 65.  doi: doi:10.1109/51.897829.  Google Scholar

[20]

A. M. Reynolds, J. Rubin, G. Clermont, J. Day, Y. Vodovotz and B. Ermentrout, A reduced mathematical model of the acute inflammatory response: I Derivation of the model and analysis of anti-inflammation,, J. Theor. Biol., 242 (2006), 220.  doi: doi:10.1016/j.jtbi.2006.02.016.  Google Scholar

[21]

Y. Vodovotz, C. C. Chow, J. Bartels, C. Lagoa, J. M. Prince, R. M. Levy, R. Kumar, J. Day, J. Rubin, G. Constantine, T. R. Billiar, M. P. Fink and G. Clermont, In silico models of acute inflammation in animals,, Shock, 26 (2006), 235.  doi: doi:10.1097/01.shk.0000225413.13866.fo.  Google Scholar

[22]

H. D. Volk, P. Reinke and W. D. Docke, Clinical aspects: From systemic inflammation to 'immunoparalysis',, Chem. Immunol., 74 (2000), 162.  doi: doi:10.1159/000058753.  Google Scholar

[1]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[2]

Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003

[3]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[4]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[5]

Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021011

[6]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[7]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[8]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[9]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[10]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[11]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[12]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[13]

Linhao Xu, Marya Claire Zdechlik, Melissa C. Smith, Min B. Rayamajhi, Don L. DeAngelis, Bo Zhang. Simulation of post-hurricane impact on invasive species with biological control management. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4059-4071. doi: 10.3934/dcds.2020038

[14]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[15]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[16]

Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029

[17]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[18]

Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144

[19]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[20]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (20)

Other articles
by authors

[Back to Top]