2010, 7(4): 765-777. doi: 10.3934/mbe.2010.7.765

A model of varicella-zoster reactivation

1. 

Department of Mathematics and Computer Science, Hobart and William Smith Colleges, Geneva, NY 14456, United States

2. 

Department of Mathematics, University of California, Davis, CA 95616, United States

Received  January 2010 Revised  August 2010 Published  October 2010

Mathematical models have been used to study the dynamic interaction of many infectious diseases with the host's immune system. In this paper, we study Varicella Zoster Virus, which is responsible for chicken pox (varicella), and after a long period of latency, herpes zoster (shingles). After developing the model and demonstrating that is exhibits the type of periodic behavior necessary for long term latency and reactivation, we examine the implications of the model for vaccine booster programs aimed at preventing herpes zoster.
Citation: Jonathan E. Forde, Bailey Meeker. A model of varicella-zoster reactivation. Mathematical Biosciences & Engineering, 2010, 7 (4) : 765-777. doi: 10.3934/mbe.2010.7.765
References:
[1]

A. Abendroth and A. M. Arvin, Immune evasion as a pathogenic mechanism of varicella zoster virus, Seminars in Immunology, 13 (2001), 27-39. doi: doi:10.1006/smim.2001.0293.

[2]

Centers for Disease Control and Prevention, Prevention of varicella: Updated recommendations of the Advisory Committee on Immunization Practices (ACIP), Morbidity and Mortality Weekly Report, 48, 1999.

[3]

Centers for Disease Control and Prevention, Prevention of herpes zoster, Morbidity and Mortality Weekly Report, 57, 2008.

[4]

J. I. Cohen, S. E. Straus and A. M. Arvin, Varicella-zoster virus replication, pathogenesis and management, in "Field's Virology" (eds. D. M. Knipe and P. M. Howley), Wolters Kluwer Health/Lippincott Williams and Wilkins, (2007), 2773-2818.

[5]

D. H. Gilden, R. J. Cohrs and R. Mahalingam, Clinical and molecular pathogenesis of varicella virus infection, Viral Immunology, 16 (2003), 243-258.

[6]

R. E. Hope-Simpson, The nature of herpes zoster: A long-term study and a new hypothesis, Proc. R. Soc. Med., 58 (1965), 9-20.

[7]

R. E. Hope-Simpson, Post-herpetic neuralgia, Journal of the Royal College of General Practitioners, 25 (1975), 571-575.

[8]

M. J. Levin, D Barber, E. Goldblatt, M. Jones, B. LaFleur, C. Chan, D. Stinson, G. O. Zerbe and A. R. Hayward, Use of a live attenuated varicella vaccine to boost varicella-specific immune responses in seropositive people 55 years of age or older: Duration of booster effect, The Journal of Infectious Diseases, 178 (suppl. 1) (1998), S109-S112.

[9]

M. J. Levin, J. G. Smith, R. M. Kaufhold, D. Barber, A. R. Hayward, C. Y. Chan, I. S. F. Chan, D. J. J. Li, W. Wang, P. M. Keller, A. Shaw, J. L. Silber, K. Schlienger, I. Chalikonda, S. J. R. Vessey and M. J. Caulfield, Decline of varicella zoster virus (VZV)-specific cell mediated immunity with increasing age and boosting with a high-dose VZV vaccine, The Journal of Infectious Diseases, 188 (2003), 1336-1344.

[10]

M. Reichelt, L. Zerboni and A.M. Arvin, Mechansisms of varicella-zoster virus neuropathogenesis in human dorsal root ganglia, Journal of Virology, 82 (2008), 3971-3983. doi: doi:10.1128/JVI.02592-07.

[11]

K. E. Schmader and R. H. Dworkin, Natural history and treatment of herpes zoster, The Journal of Pain, 9 (suppl. 1) (2008), 53-59. doi: doi:10.1016/j.jpain.2007.10.002.

[12]

S. L. Thomas, J. G. Wheeler and A. J. Hall, Contacts with varicella or with children and protection against herpes zoster in adults: A case-control study, The Lancet, 360 (2002), 678-682.

[13]

J. M. Weinberg., Herpes zoster: Epidemiology, natural history and common complications, Journal of the American Academy of Dermatology, 57 (2007), S130-S135. doi: doi:10.1016/j.jaad.2007.08.046.

[14]

A. Wilson, M. Sharp, C. M. Koropchak, S. F. Ting and A. M. Arvin, Subclinical varicella-zoster virus viremia, herpes zoster, and T lymphocyte immunity to varicella-zoster viral antigens after bone marrow transplants, Journal of Infectious Diseases, 165 (1992), 119-126.

show all references

References:
[1]

A. Abendroth and A. M. Arvin, Immune evasion as a pathogenic mechanism of varicella zoster virus, Seminars in Immunology, 13 (2001), 27-39. doi: doi:10.1006/smim.2001.0293.

[2]

Centers for Disease Control and Prevention, Prevention of varicella: Updated recommendations of the Advisory Committee on Immunization Practices (ACIP), Morbidity and Mortality Weekly Report, 48, 1999.

[3]

Centers for Disease Control and Prevention, Prevention of herpes zoster, Morbidity and Mortality Weekly Report, 57, 2008.

[4]

J. I. Cohen, S. E. Straus and A. M. Arvin, Varicella-zoster virus replication, pathogenesis and management, in "Field's Virology" (eds. D. M. Knipe and P. M. Howley), Wolters Kluwer Health/Lippincott Williams and Wilkins, (2007), 2773-2818.

[5]

D. H. Gilden, R. J. Cohrs and R. Mahalingam, Clinical and molecular pathogenesis of varicella virus infection, Viral Immunology, 16 (2003), 243-258.

[6]

R. E. Hope-Simpson, The nature of herpes zoster: A long-term study and a new hypothesis, Proc. R. Soc. Med., 58 (1965), 9-20.

[7]

R. E. Hope-Simpson, Post-herpetic neuralgia, Journal of the Royal College of General Practitioners, 25 (1975), 571-575.

[8]

M. J. Levin, D Barber, E. Goldblatt, M. Jones, B. LaFleur, C. Chan, D. Stinson, G. O. Zerbe and A. R. Hayward, Use of a live attenuated varicella vaccine to boost varicella-specific immune responses in seropositive people 55 years of age or older: Duration of booster effect, The Journal of Infectious Diseases, 178 (suppl. 1) (1998), S109-S112.

[9]

M. J. Levin, J. G. Smith, R. M. Kaufhold, D. Barber, A. R. Hayward, C. Y. Chan, I. S. F. Chan, D. J. J. Li, W. Wang, P. M. Keller, A. Shaw, J. L. Silber, K. Schlienger, I. Chalikonda, S. J. R. Vessey and M. J. Caulfield, Decline of varicella zoster virus (VZV)-specific cell mediated immunity with increasing age and boosting with a high-dose VZV vaccine, The Journal of Infectious Diseases, 188 (2003), 1336-1344.

[10]

M. Reichelt, L. Zerboni and A.M. Arvin, Mechansisms of varicella-zoster virus neuropathogenesis in human dorsal root ganglia, Journal of Virology, 82 (2008), 3971-3983. doi: doi:10.1128/JVI.02592-07.

[11]

K. E. Schmader and R. H. Dworkin, Natural history and treatment of herpes zoster, The Journal of Pain, 9 (suppl. 1) (2008), 53-59. doi: doi:10.1016/j.jpain.2007.10.002.

[12]

S. L. Thomas, J. G. Wheeler and A. J. Hall, Contacts with varicella or with children and protection against herpes zoster in adults: A case-control study, The Lancet, 360 (2002), 678-682.

[13]

J. M. Weinberg., Herpes zoster: Epidemiology, natural history and common complications, Journal of the American Academy of Dermatology, 57 (2007), S130-S135. doi: doi:10.1016/j.jaad.2007.08.046.

[14]

A. Wilson, M. Sharp, C. M. Koropchak, S. F. Ting and A. M. Arvin, Subclinical varicella-zoster virus viremia, herpes zoster, and T lymphocyte immunity to varicella-zoster viral antigens after bone marrow transplants, Journal of Infectious Diseases, 165 (1992), 119-126.

[1]

Avner Friedman, Chuan Xue. A mathematical model for chronic wounds. Mathematical Biosciences & Engineering, 2011, 8 (2) : 253-261. doi: 10.3934/mbe.2011.8.253

[2]

Jinliang Wang, Xiu Dong. Analysis of an HIV infection model incorporating latency age and infection age. Mathematical Biosciences & Engineering, 2018, 15 (3) : 569-594. doi: 10.3934/mbe.2018026

[3]

Hao Kang, Qimin Huang, Shigui Ruan. Periodic solutions of an age-structured epidemic model with periodic infection rate. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4955-4972. doi: 10.3934/cpaa.2020220

[4]

Pep Charusanti, Xiao Hu, Luonan Chen, Daniel Neuhauser, Joseph J. DiStefano III. A mathematical model of BCR-ABL autophosphorylation, signaling through the CRKL pathway, and Gleevec dynamics in chronic myeloid leukemia. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 99-114. doi: 10.3934/dcdsb.2004.4.99

[5]

Jinliang Wang, Jiying Lang, Yuming Chen. Global dynamics of an age-structured HIV infection model incorporating latency and cell-to-cell transmission. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3721-3747. doi: 10.3934/dcdsb.2017186

[6]

Samantha Erwin, Stanca M. Ciupe. Germinal center dynamics during acute and chronic infection. Mathematical Biosciences & Engineering, 2017, 14 (3) : 655-671. doi: 10.3934/mbe.2017037

[7]

Natalia L. Komarova. Mathematical modeling of cyclic treatments of chronic myeloid leukemia. Mathematical Biosciences & Engineering, 2011, 8 (2) : 289-306. doi: 10.3934/mbe.2011.8.289

[8]

Xuejuan Lu, Lulu Hui, Shengqiang Liu, Jia Li. A mathematical model of HTLV-I infection with two time delays. Mathematical Biosciences & Engineering, 2015, 12 (3) : 431-449. doi: 10.3934/mbe.2015.12.431

[9]

Zindoga Mukandavire, Abba B. Gumel, Winston Garira, Jean Michel Tchuenche. Mathematical analysis of a model for HIV-malaria co-infection. Mathematical Biosciences & Engineering, 2009, 6 (2) : 333-362. doi: 10.3934/mbe.2009.6.333

[10]

Suxia Zhang, Xiaxia Xu. A mathematical model for hepatitis B with infection-age structure. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1329-1346. doi: 10.3934/dcdsb.2016.21.1329

[11]

Erika Asano, Louis J. Gross, Suzanne Lenhart, Leslie A. Real. Optimal control of vaccine distribution in a rabies metapopulation model. Mathematical Biosciences & Engineering, 2008, 5 (2) : 219-238. doi: 10.3934/mbe.2008.5.219

[12]

Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479

[13]

Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic and Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707

[14]

Mamadou L. Diagne, Ousmane Seydi, Aissata A. B. Sy. A two-group age of infection epidemic model with periodic behavioral changes. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : 2057-2092. doi: 10.3934/dcdsb.2019202

[15]

Nikolay Pertsev, Konstantin Loginov, Gennady Bocharov. Nonlinear effects in the dynamics of HIV-1 infection predicted by mathematical model with multiple delays. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2365-2384. doi: 10.3934/dcdss.2020141

[16]

Seema Nanda, Lisette dePillis, Ami Radunskaya. B cell chronic lymphocytic leukemia - A model with immune response. Discrete and Continuous Dynamical Systems - B, 2013, 18 (4) : 1053-1076. doi: 10.3934/dcdsb.2013.18.1053

[17]

Julien Arino, K.L. Cooke, P. van den Driessche, J. Velasco-Hernández. An epidemiology model that includes a leaky vaccine with a general waning function. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 479-495. doi: 10.3934/dcdsb.2004.4.479

[18]

Abba B. Gumel, C. Connell McCluskey, James Watmough. An sveir model for assessing potential impact of an imperfect anti-SARS vaccine. Mathematical Biosciences & Engineering, 2006, 3 (3) : 485-512. doi: 10.3934/mbe.2006.3.485

[19]

Daniel Vasiliu, Jianjun Paul Tian. Periodic solutions of a model for tumor virotherapy. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1587-1597. doi: 10.3934/dcdss.2011.4.1587

[20]

Faker Ben Belgacem. Uniqueness for an ill-posed reaction-dispersion model. Application to organic pollution in stream-waters. Inverse Problems and Imaging, 2012, 6 (2) : 163-181. doi: 10.3934/ipi.2012.6.163

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]