-
Previous Article
Minimal state models for ionic channels involved in glucagon secretion
- MBE Home
- This Issue
-
Next Article
A model of varicella-zoster reactivation
A model of drug resistance with infection by health care workers
1. | The Ohio State University, Department of Mathematics, Columbus, OH 43210, United States |
2. | The Ohio State University, Mathematical Biosciences Institute, Columbus, OH 43210, United States |
3. | Iowa State University, Department of Mathematics, 482 Carver Hall Ames, IA 50011 |
References:
[1] |
D. J. Austin, M. J. M. Bonten, R. A. Weinstein, S. Slaughter and R. M. Anderson, Vancomycin-resistant enterococci in intensive-care hospital settings: Transmission dynamics, persistence, and the impact of infection control programs, PNAS, 96 (1999), 6908-6913.
doi: doi:10.1073/pnas.96.12.6908. |
[2] |
M. C. J. Bootsma, O. Diekmann and M. J. M. Bonten, Controlling methicillin-resistant staphylococcus aureus: Quantifying the effects of interventions and rapid diagnostic testing, PNAS, 103 (2006), 5620-5625.
doi: doi:10.1073/pnas.0510077103. |
[3] |
M. J. M. Bonten, R. Willems and R. A. Weinstein, Vancomycin-resistant enterococci: Why are they here, and where do they come from?, The Lancet Infectious Diseases, 1 (2001), 314-325.
doi: doi:10.1016/S1473-3099(01)00145-1. |
[4] |
D. S. Burgess, Pharmacodynamic principles of antimicrobial therapy in the prevention of resistance, Chest, 115 (1999), 19S-23S.
doi: doi:10.1378/chest.115.suppl_1.19S. |
[5] |
B. S. Cooper, G. F. Medley and G. M. Scott, Preliminary analysis of the transmission dynamics of nosocomial infections: Stochastic and management effects, The Journal of Hospital Infection, 43 (1999), 131-147.
doi: doi:10.1053/jhin.1998.0647. |
[6] |
E. M. C. D'Agata, M. Dupont-Rouzeyrol, P. Magal, D. Olivier and S. Ruan, The impact of different antibiotic regimens on the emergence of antimicrobial-resistant bacteria, PLoS ONE, 3 (2008), e4036+.
doi: doi:10.1371/journal.pone.0004036. |
[7] |
E. M. C. D'Agata, M. A. Horn and G. F. Webb, The impact of persistent gastrointestinal colonization on the transmission dynamics of vancomycin-resistant enterococci, The Journal of Infectious Diseases, 185 (2002), 766-773.
doi: doi:10.1086/339293. |
[8] |
E. M. C. D'Agata, P. Magal, D. Olivier, S. Ruan and G. F. Webb, Modeling antibiotic resistance in hospitals: The impact of minimizing treatment duration, J. Theor. Biol., 249 (2007), 487-499.
doi: doi:10.1016/j.jtbi.2007.08.011. |
[9] |
E. M. C. D'Agata, G. F. Webb and M. A. Horn, A mathematical model quantifying the impact of antibiotic exposure and other interventions on the endemic prevalence of vancomycin-resistant enterococci, The Journal of Infectious Diseases, 192 (2005), 2004-2011.
doi: doi:10.1086/498041. |
[10] |
E. M. C. D'Agata, G. F. Webb, M. A. Horn, R. C. Moellering and S. Ruan, Modeling the invasion of community-acquired methicillin-resistant staphylococcus aureus into hospitals, Clinical Infectious Diseases, 48 (2009), 274-284.
doi: doi:10.1086/595844. |
[11] |
B. M. Farr, C. D. Salgado, T. B. Karchmer and R. J. Sherertz, Can antibiotic-resistant nosocomial infections be controlled? The Lancet Infectious Diseases, 1 (2001), 38-45.
doi: doi:10.1016/S1473-3099(01)00020-2. |
[12] |
H. Grundmann, M. Aires-de-Sousa, J. Boyce and E. Tiemersma, Emergence and resurgence of meticillin-resistant staphylococcus aureus as a public-health threat, The Lancet Infectious Diseases, 368 (2006), 874-885. |
[13] |
H. Grundmann and B. Hellriegel, Mathematical modelling: A tool for hospital infection control, The Lancet Infectious Diseases, 6 (2006), 39-45.
doi: doi:10.1016/S1473-3099(05)70325-X. |
[14] |
K. Hiramatsu, Vancomycin-resistant staphylococcus aureus: A new model of antibiotic resistance, The Lancet Infectious Diseases, 1 (2001), 147-155.
doi: doi:10.1016/S1473-3099(01)00091-3. |
[15] |
A. Handel, E. Margolis and B. R. Levin, Exploring the role of the immune response in preventing antibiotic resistance, Journal of Theoretical Biology, 256 (2009), 655-662.
doi: doi:10.1016/j.jtbi.2008.10.025. |
[16] |
M. Lipsitch, C. T. Bergstrom and B. R. Levin, The epidemiology of antibiotic resistance in hospitals: Paradoxes and prescriptions, PNAS, 97 (2000), 1938-43.
doi: doi:10.1073/pnas.97.4.1938. |
[17] |
R. J. LeVeque, "Numerical Methods for Conservation Laws," Second edition, Lectures in Mamathematics, ETH Zürich, Birkhäuser Verlag, Basel, 1992. |
[18] |
R. J. LeVeque, "Finite Volume Methods for Hyperbolic Problems," Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002.
doi: doi:10.1017/CBO9780511791253. |
[19] |
L. R. Peterson, Squeezing the antibiotic balloon: The impact of antimicrobial classes on emerging resistance, Clin. Microbiol. Infect. 11 Suppl., 5 (2005), 4-16. |
[20] |
D. L. Smith, J. Dushoff, E. N. Perencevich, A. D. Harris and S. A. Levin, Persistent colonization and the spread of antibiotic resistance in nosocomial pathogens: Resistance is a regional problem, PNAS, 101 (2004), 3709-3714.
doi: doi:10.1073/pnas.0400456101. |
[21] |
L. Temime, P. Y. Boëlle, P. Courvalin and D. Guillemot, Bacterial resistance to penicillin g by decreased affinity of penicillin-binding proteins: A mathematical model, Emerging Infect. Dis., 9 (2003), 411-417. |
[22] |
G. F. Webb, E. M. C. D'Agata, P. Magal and S. Ruan, A model of antibiotic-resistant bacterial epidemics in hospitals, PNAS, 102 (2005), 13343-13348.
doi: doi:10.1073/pnas.0504053102. |
[23] |
G. F. Webb, M. A. Horn, E. M. C. D'Agata, R. C. Moellering and S. Ruan, Competition of hospital-acquired and community-acquired methicillin-resistant Staphylococcus aureus strains in hospitals, J. Biol. Dyn., 4 (2010), 115-129.
doi: doi:10.1080/17513750903026411. |
show all references
References:
[1] |
D. J. Austin, M. J. M. Bonten, R. A. Weinstein, S. Slaughter and R. M. Anderson, Vancomycin-resistant enterococci in intensive-care hospital settings: Transmission dynamics, persistence, and the impact of infection control programs, PNAS, 96 (1999), 6908-6913.
doi: doi:10.1073/pnas.96.12.6908. |
[2] |
M. C. J. Bootsma, O. Diekmann and M. J. M. Bonten, Controlling methicillin-resistant staphylococcus aureus: Quantifying the effects of interventions and rapid diagnostic testing, PNAS, 103 (2006), 5620-5625.
doi: doi:10.1073/pnas.0510077103. |
[3] |
M. J. M. Bonten, R. Willems and R. A. Weinstein, Vancomycin-resistant enterococci: Why are they here, and where do they come from?, The Lancet Infectious Diseases, 1 (2001), 314-325.
doi: doi:10.1016/S1473-3099(01)00145-1. |
[4] |
D. S. Burgess, Pharmacodynamic principles of antimicrobial therapy in the prevention of resistance, Chest, 115 (1999), 19S-23S.
doi: doi:10.1378/chest.115.suppl_1.19S. |
[5] |
B. S. Cooper, G. F. Medley and G. M. Scott, Preliminary analysis of the transmission dynamics of nosocomial infections: Stochastic and management effects, The Journal of Hospital Infection, 43 (1999), 131-147.
doi: doi:10.1053/jhin.1998.0647. |
[6] |
E. M. C. D'Agata, M. Dupont-Rouzeyrol, P. Magal, D. Olivier and S. Ruan, The impact of different antibiotic regimens on the emergence of antimicrobial-resistant bacteria, PLoS ONE, 3 (2008), e4036+.
doi: doi:10.1371/journal.pone.0004036. |
[7] |
E. M. C. D'Agata, M. A. Horn and G. F. Webb, The impact of persistent gastrointestinal colonization on the transmission dynamics of vancomycin-resistant enterococci, The Journal of Infectious Diseases, 185 (2002), 766-773.
doi: doi:10.1086/339293. |
[8] |
E. M. C. D'Agata, P. Magal, D. Olivier, S. Ruan and G. F. Webb, Modeling antibiotic resistance in hospitals: The impact of minimizing treatment duration, J. Theor. Biol., 249 (2007), 487-499.
doi: doi:10.1016/j.jtbi.2007.08.011. |
[9] |
E. M. C. D'Agata, G. F. Webb and M. A. Horn, A mathematical model quantifying the impact of antibiotic exposure and other interventions on the endemic prevalence of vancomycin-resistant enterococci, The Journal of Infectious Diseases, 192 (2005), 2004-2011.
doi: doi:10.1086/498041. |
[10] |
E. M. C. D'Agata, G. F. Webb, M. A. Horn, R. C. Moellering and S. Ruan, Modeling the invasion of community-acquired methicillin-resistant staphylococcus aureus into hospitals, Clinical Infectious Diseases, 48 (2009), 274-284.
doi: doi:10.1086/595844. |
[11] |
B. M. Farr, C. D. Salgado, T. B. Karchmer and R. J. Sherertz, Can antibiotic-resistant nosocomial infections be controlled? The Lancet Infectious Diseases, 1 (2001), 38-45.
doi: doi:10.1016/S1473-3099(01)00020-2. |
[12] |
H. Grundmann, M. Aires-de-Sousa, J. Boyce and E. Tiemersma, Emergence and resurgence of meticillin-resistant staphylococcus aureus as a public-health threat, The Lancet Infectious Diseases, 368 (2006), 874-885. |
[13] |
H. Grundmann and B. Hellriegel, Mathematical modelling: A tool for hospital infection control, The Lancet Infectious Diseases, 6 (2006), 39-45.
doi: doi:10.1016/S1473-3099(05)70325-X. |
[14] |
K. Hiramatsu, Vancomycin-resistant staphylococcus aureus: A new model of antibiotic resistance, The Lancet Infectious Diseases, 1 (2001), 147-155.
doi: doi:10.1016/S1473-3099(01)00091-3. |
[15] |
A. Handel, E. Margolis and B. R. Levin, Exploring the role of the immune response in preventing antibiotic resistance, Journal of Theoretical Biology, 256 (2009), 655-662.
doi: doi:10.1016/j.jtbi.2008.10.025. |
[16] |
M. Lipsitch, C. T. Bergstrom and B. R. Levin, The epidemiology of antibiotic resistance in hospitals: Paradoxes and prescriptions, PNAS, 97 (2000), 1938-43.
doi: doi:10.1073/pnas.97.4.1938. |
[17] |
R. J. LeVeque, "Numerical Methods for Conservation Laws," Second edition, Lectures in Mamathematics, ETH Zürich, Birkhäuser Verlag, Basel, 1992. |
[18] |
R. J. LeVeque, "Finite Volume Methods for Hyperbolic Problems," Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002.
doi: doi:10.1017/CBO9780511791253. |
[19] |
L. R. Peterson, Squeezing the antibiotic balloon: The impact of antimicrobial classes on emerging resistance, Clin. Microbiol. Infect. 11 Suppl., 5 (2005), 4-16. |
[20] |
D. L. Smith, J. Dushoff, E. N. Perencevich, A. D. Harris and S. A. Levin, Persistent colonization and the spread of antibiotic resistance in nosocomial pathogens: Resistance is a regional problem, PNAS, 101 (2004), 3709-3714.
doi: doi:10.1073/pnas.0400456101. |
[21] |
L. Temime, P. Y. Boëlle, P. Courvalin and D. Guillemot, Bacterial resistance to penicillin g by decreased affinity of penicillin-binding proteins: A mathematical model, Emerging Infect. Dis., 9 (2003), 411-417. |
[22] |
G. F. Webb, E. M. C. D'Agata, P. Magal and S. Ruan, A model of antibiotic-resistant bacterial epidemics in hospitals, PNAS, 102 (2005), 13343-13348.
doi: doi:10.1073/pnas.0504053102. |
[23] |
G. F. Webb, M. A. Horn, E. M. C. D'Agata, R. C. Moellering and S. Ruan, Competition of hospital-acquired and community-acquired methicillin-resistant Staphylococcus aureus strains in hospitals, J. Biol. Dyn., 4 (2010), 115-129.
doi: doi:10.1080/17513750903026411. |
[1] |
Zhun Han, Hal L. Smith. Bacteriophage-resistant and bacteriophage-sensitive bacteria in a chemostat. Mathematical Biosciences & Engineering, 2012, 9 (4) : 737-765. doi: 10.3934/mbe.2012.9.737 |
[2] |
Don A. Jones, Hal L. Smith, Horst R. Thieme. Spread of viral infection of immobilized bacteria. Networks and Heterogeneous Media, 2013, 8 (1) : 327-342. doi: 10.3934/nhm.2013.8.327 |
[3] |
Andrzej Swierniak, Jaroslaw Smieja. Analysis and Optimization of Drug Resistant an Phase-Specific Cancer. Mathematical Biosciences & Engineering, 2005, 2 (3) : 657-670. doi: 10.3934/mbe.2005.2.657 |
[4] |
Semih Yalçındağ, Ettore Lanzarone. Merging short-term and long-term planning problems in home health care under continuity of care and patterns for visits. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1487-1504. doi: 10.3934/jimo.2021029 |
[5] |
Glenn F. Webb. Individual based models and differential equations models of nosocomial epidemics in hospital intensive care units. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 1145-1166. doi: 10.3934/dcdsb.2017056 |
[6] |
Don A. Jones, Hal L. Smith, Horst R. Thieme. Spread of phage infection of bacteria in a petri dish. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 471-496. doi: 10.3934/dcdsb.2016.21.471 |
[7] |
Silvia Martorano Raimundo, Hyun Mo Yang, Ezio Venturino. Theoretical assessment of the relative incidences of sensitive and resistant tuberculosis epidemic in presence of drug treatment. Mathematical Biosciences & Engineering, 2014, 11 (4) : 971-993. doi: 10.3934/mbe.2014.11.971 |
[8] |
Abba B. Gumel, Baojun Song. Existence of multiple-stable equilibria for a multi-drug-resistant model of mycobacterium tuberculosis. Mathematical Biosciences & Engineering, 2008, 5 (3) : 437-455. doi: 10.3934/mbe.2008.5.437 |
[9] |
Danyun He, Qian Wang, Wing-Cheong Lo. Mathematical analysis of macrophage-bacteria interaction in tuberculosis infection. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3387-3413. doi: 10.3934/dcdsb.2018239 |
[10] |
Dan A. Korytowski, Hal L. Smith. Persistence in phage-bacteria communities with nested and one-to-one infection networks. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 859-875. doi: 10.3934/dcdsb.2017043 |
[11] |
Ram P. Sigdel, C. Connell McCluskey. Disease dynamics for the hometown of migrant workers. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1175-1180. doi: 10.3934/mbe.2014.11.1175 |
[12] |
Roman Czapla, Vladimir V. Mityushev. A criterion of collective behavior of bacteria. Mathematical Biosciences & Engineering, 2017, 14 (1) : 277-287. doi: 10.3934/mbe.2017018 |
[13] |
Yan Zhang, Yonghong Wu, Haixiang Yao. Optimal health insurance with constraints under utility of health, wealth and income. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1519-1540. doi: 10.3934/jimo.2021031 |
[14] |
Helen Moore, Weiqing Gu. A mathematical model for treatment-resistant mutations of HIV. Mathematical Biosciences & Engineering, 2005, 2 (2) : 363-380. doi: 10.3934/mbe.2005.2.363 |
[15] |
John Boscoh H. Njagarah, Farai Nyabadza. Modelling the role of drug barons on the prevalence of drug epidemics. Mathematical Biosciences & Engineering, 2013, 10 (3) : 843-860. doi: 10.3934/mbe.2013.10.843 |
[16] |
Aili Wang, Yanni Xiao, Huaiping Zhu. Dynamics of a Filippov epidemic model with limited hospital beds. Mathematical Biosciences & Engineering, 2018, 15 (3) : 739-764. doi: 10.3934/mbe.2018033 |
[17] |
Lu Xiong, Tingting Sun, Randall Green. Predictive analytics for 30-day hospital readmissions. Mathematical Foundations of Computing, 2022, 5 (2) : 93-111. doi: 10.3934/mfc.2021035 |
[18] |
Giuseppe Toscani. A kinetic description of mutation processes in bacteria. Kinetic and Related Models, 2013, 6 (4) : 1043-1055. doi: 10.3934/krm.2013.6.1043 |
[19] |
Elvio Accinelli, Bruno Bazzano, Franco Robledo, Pablo Romero. Nash Equilibrium in evolutionary competitive models of firms and workers under external regulation. Journal of Dynamics and Games, 2015, 2 (1) : 1-32. doi: 10.3934/jdg.2015.2.1 |
[20] |
Luju Liu, Jianhong Wu, Xiao-Qiang Zhao. The impact of migrant workers on the tuberculosis transmission: General models and a case study for China. Mathematical Biosciences & Engineering, 2012, 9 (4) : 785-807. doi: 10.3934/mbe.2012.9.785 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]