2010, 7(4): 825-836. doi: 10.3934/mbe.2010.7.825

A stoichiometrically derived algal growth model and its global analysis

1. 

Department of Mathematical Sciences, Beijing Normal University, Beijing 100875

2. 

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1, Canada

Received  August 2010 Revised  August 2010 Published  October 2010

Organisms are composed of multiple chemical elements such as carbon, nitrogen, and phosphorus. The scarcity of any of these elements can severely restrict organismal and population growth. However, many trophic interaction models only consider carbon limitation via energy flow. In this paper, we construct an algal growth model with the explicit incorporation of light and nutrient availability to characterize both carbon and phosphorus limitations. We provide a global analysis of this model to illustrate how light and nutrient availability regulate algal dynamics.
Citation: Xiong Li, Hao Wang. A stoichiometrically derived algal growth model and its global analysis. Mathematical Biosciences & Engineering, 2010, 7 (4) : 825-836. doi: 10.3934/mbe.2010.7.825
References:
[1]

T. Andersen, "Pelagic Nutrient Cycles: Herbivores as Sourced and Sinks for Nutrients,", Springer-Verlag, (1997). Google Scholar

[2]

S. A. Berger, S. Diehl, T. J. Kunz, D. Albrecht, A. M. Oucible and S. Ritzer, Light supply, plankton biomass, and seston stoichiometry in a gradient of lake mixing depths,, Limnol. Oceanogr., 51 (2006), 1898. doi: doi:10.4319/lo.2006.51.4.1898. Google Scholar

[3]

S. Diehl, Phytoplankton, light, and nutrients in a gradient of mixing depths: Theory,, Ecology, 83 (2002), 386. doi: doi:10.1890/0012-9658(2002)083[0386:PLANIA]2.0.CO;2. Google Scholar

[4]

S. Diehl, S. A. Berger and R. Wöhrl, Flexible algal nutrient stoichiometry mediates environmental influences on phytoplankton and its abiotic resources,, Ecology, 86 (2005), 2931. doi: doi:10.1890/04-1512. Google Scholar

[5]

M. R. Droop, Vitamin B12 and marine ecology, IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri,, J. Mar. Biol. Assoc. UK, 48 (1968), 689. doi: doi:10.1017/S0025315400019238. Google Scholar

[6]

M. R. Droop, Some thoughts on nutrient limitation in algae,, J. Phycol., 9 (1973), 264. Google Scholar

[7]

J. P. Grover, Stoichiometry, herbivory and competition for nutrients: Simple models based on planktonic ecosystems,, J. Theor. Biol., 214 (2002), 599. doi: doi:10.1006/jtbi.2001.2488. Google Scholar

[8]

D. O. Hessen and B. Bjerkeng, A model approach to planktonic stoichiometry and consumer-resource stability,, Freshwater Biol., 38 (1997), 447. doi: doi:10.1046/j.1365-2427.1997.00224.x. Google Scholar

[9]

J. Huisman and F. J. Weissing, Light-limited growth and competition for light in well-mixed aquatic environments: An elementary model,, Ecology, 75 (1994), 507. doi: doi:10.2307/1939554. Google Scholar

[10]

J. Huisman and F. J. Weissing, Competition for nutrients and light in a mixed water column: A theoretical analysis,, Am. Nat., 146 (1995), 536. doi: doi:10.1086/285814. Google Scholar

[11]

C. A. Klausmeier and E. Litchman, Algal games: The vertical distribution of phytoplankton in poorly mixed water columns,, Limnol. Oceanogr., 46 (2001), 1998. doi: doi:10.4319/lo.2001.46.8.1998. Google Scholar

[12]

C. A. Klausmeier, E. Litchman and S. A. Levin, Phytoplankton growth and stoichiometry under multiple nutrient limitation,, Limnol. Oceanogr., 49 (2004), 1463. doi: doi:10.4319/lo.2004.49.4_part_2.1463. Google Scholar

[13]

Y. Kuang, J. Huisman and J. J. Elser, Stoichiometric plant-herbivore models and their interpretation,, Mathematical Biosciences and Engineering, 1 (2004), 215. Google Scholar

[14]

L. D. J. Kuijper, B. W. Kooi, T. R. Anderson and S. A. L. M. Kooijman, Stoichiometry and food-chain dynamics,, Theoretical Population Biology, 66 (2004), 323. doi: doi:10.1016/j.tpb.2004.06.011. Google Scholar

[15]

J. D. Logan, A. Joern and W. Wolesensky, Mathematical model of consumer homeostasis control in plant-herbivore dynamics,, Mathematical and Computer Modelling, 40 (2004), 447. doi: doi:10.1016/j.mcm.2003.05.016. Google Scholar

[16]

I. Loladze, Y. Kuang and J. J. Elser, Stoichiometry in producer-grazer systems: Linking energy flow with element cycling,, Bull. Math. Biol., 62 (2000), 1137. doi: doi:10.1006/bulm.2000.0201. Google Scholar

[17]

R. W. Sterner and J. J. Elser, "Ecological Stoichiometry - The Biology of Elements from Molecules to the Biosphere,", Princeton University Press, (2002). Google Scholar

[18]

H. Wang, H. L. Smith, Y. Kuang and J. J. Elser, Dynamics of stoichiometric bacteria-algae interactions in the epilimnion,, SIAM J. Appl. Math., 68 (2007), 503. doi: doi:10.1137/060665919. Google Scholar

[19]

H. Wang, Y. Kuang and I. Loladze, Dynamics of a mechanistically derived stoichiometric producer-grazer model,, Journal of Biological Dynamics, 2 (2008), 286. doi: doi:10.1080/17513750701769881. Google Scholar

[20]

H. Wang, K. Dunning, J. J. Elser and Y. Kuang, Daphnia species invasion, competitive exclusion, and chaotic coexistence,, DCDS-B, 12 (2009), 481. doi: doi:10.3934/dcdsb.2009.12.481. Google Scholar

show all references

References:
[1]

T. Andersen, "Pelagic Nutrient Cycles: Herbivores as Sourced and Sinks for Nutrients,", Springer-Verlag, (1997). Google Scholar

[2]

S. A. Berger, S. Diehl, T. J. Kunz, D. Albrecht, A. M. Oucible and S. Ritzer, Light supply, plankton biomass, and seston stoichiometry in a gradient of lake mixing depths,, Limnol. Oceanogr., 51 (2006), 1898. doi: doi:10.4319/lo.2006.51.4.1898. Google Scholar

[3]

S. Diehl, Phytoplankton, light, and nutrients in a gradient of mixing depths: Theory,, Ecology, 83 (2002), 386. doi: doi:10.1890/0012-9658(2002)083[0386:PLANIA]2.0.CO;2. Google Scholar

[4]

S. Diehl, S. A. Berger and R. Wöhrl, Flexible algal nutrient stoichiometry mediates environmental influences on phytoplankton and its abiotic resources,, Ecology, 86 (2005), 2931. doi: doi:10.1890/04-1512. Google Scholar

[5]

M. R. Droop, Vitamin B12 and marine ecology, IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri,, J. Mar. Biol. Assoc. UK, 48 (1968), 689. doi: doi:10.1017/S0025315400019238. Google Scholar

[6]

M. R. Droop, Some thoughts on nutrient limitation in algae,, J. Phycol., 9 (1973), 264. Google Scholar

[7]

J. P. Grover, Stoichiometry, herbivory and competition for nutrients: Simple models based on planktonic ecosystems,, J. Theor. Biol., 214 (2002), 599. doi: doi:10.1006/jtbi.2001.2488. Google Scholar

[8]

D. O. Hessen and B. Bjerkeng, A model approach to planktonic stoichiometry and consumer-resource stability,, Freshwater Biol., 38 (1997), 447. doi: doi:10.1046/j.1365-2427.1997.00224.x. Google Scholar

[9]

J. Huisman and F. J. Weissing, Light-limited growth and competition for light in well-mixed aquatic environments: An elementary model,, Ecology, 75 (1994), 507. doi: doi:10.2307/1939554. Google Scholar

[10]

J. Huisman and F. J. Weissing, Competition for nutrients and light in a mixed water column: A theoretical analysis,, Am. Nat., 146 (1995), 536. doi: doi:10.1086/285814. Google Scholar

[11]

C. A. Klausmeier and E. Litchman, Algal games: The vertical distribution of phytoplankton in poorly mixed water columns,, Limnol. Oceanogr., 46 (2001), 1998. doi: doi:10.4319/lo.2001.46.8.1998. Google Scholar

[12]

C. A. Klausmeier, E. Litchman and S. A. Levin, Phytoplankton growth and stoichiometry under multiple nutrient limitation,, Limnol. Oceanogr., 49 (2004), 1463. doi: doi:10.4319/lo.2004.49.4_part_2.1463. Google Scholar

[13]

Y. Kuang, J. Huisman and J. J. Elser, Stoichiometric plant-herbivore models and their interpretation,, Mathematical Biosciences and Engineering, 1 (2004), 215. Google Scholar

[14]

L. D. J. Kuijper, B. W. Kooi, T. R. Anderson and S. A. L. M. Kooijman, Stoichiometry and food-chain dynamics,, Theoretical Population Biology, 66 (2004), 323. doi: doi:10.1016/j.tpb.2004.06.011. Google Scholar

[15]

J. D. Logan, A. Joern and W. Wolesensky, Mathematical model of consumer homeostasis control in plant-herbivore dynamics,, Mathematical and Computer Modelling, 40 (2004), 447. doi: doi:10.1016/j.mcm.2003.05.016. Google Scholar

[16]

I. Loladze, Y. Kuang and J. J. Elser, Stoichiometry in producer-grazer systems: Linking energy flow with element cycling,, Bull. Math. Biol., 62 (2000), 1137. doi: doi:10.1006/bulm.2000.0201. Google Scholar

[17]

R. W. Sterner and J. J. Elser, "Ecological Stoichiometry - The Biology of Elements from Molecules to the Biosphere,", Princeton University Press, (2002). Google Scholar

[18]

H. Wang, H. L. Smith, Y. Kuang and J. J. Elser, Dynamics of stoichiometric bacteria-algae interactions in the epilimnion,, SIAM J. Appl. Math., 68 (2007), 503. doi: doi:10.1137/060665919. Google Scholar

[19]

H. Wang, Y. Kuang and I. Loladze, Dynamics of a mechanistically derived stoichiometric producer-grazer model,, Journal of Biological Dynamics, 2 (2008), 286. doi: doi:10.1080/17513750701769881. Google Scholar

[20]

H. Wang, K. Dunning, J. J. Elser and Y. Kuang, Daphnia species invasion, competitive exclusion, and chaotic coexistence,, DCDS-B, 12 (2009), 481. doi: doi:10.3934/dcdsb.2009.12.481. Google Scholar

[1]

Zhiqi Lu. Global stability for a chemostat-type model with delayed nutrient recycling. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 663-670. doi: 10.3934/dcdsb.2004.4.663

[2]

Sze-Bi Hsu, Chiu-Ju Lin. Dynamics of two phytoplankton species competing for light and nutrient with internal storage. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1259-1285. doi: 10.3934/dcdss.2014.7.1259

[3]

Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325

[4]

Ahuod Alsheri, Ebraheem O. Alzahrani, Asim Asiri, Mohamed M. El-Dessoky, Yang Kuang. Tumor growth dynamics with nutrient limitation and cell proliferation time delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3771-3782. doi: 10.3934/dcdsb.2017189

[5]

Junping Shi, Jimin Zhang, Xiaoyan Zhang. Stability and asymptotic profile of steady state solutions to a reaction-diffusion pelagic-benthic algae growth model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2325-2347. doi: 10.3934/cpaa.2019105

[6]

Jinliang Wang, Lijuan Guan. Global stability for a HIV-1 infection model with cell-mediated immune response and intracellular delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 297-302. doi: 10.3934/dcdsb.2012.17.297

[7]

Jian-Guo Liu, Min Tang, Li Wang, Zhennan Zhou. Analysis and computation of some tumor growth models with nutrient: From cell density models to free boundary dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3011-3035. doi: 10.3934/dcdsb.2018297

[8]

Yang Kuang, John D. Nagy, James J. Elser. Biological stoichiometry of tumor dynamics: Mathematical models and analysis. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 221-240. doi: 10.3934/dcdsb.2004.4.221

[9]

Luc Bergé, Stefan Skupin. Modeling ultrashort filaments of light. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1099-1139. doi: 10.3934/dcds.2009.23.1099

[10]

Jinliang Wang, Jiying Lang, Yuming Chen. Global dynamics of an age-structured HIV infection model incorporating latency and cell-to-cell transmission. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3721-3747. doi: 10.3934/dcdsb.2017186

[11]

Hossein Pourbashash, Sergei S. Pilyugin, Patrick De Leenheer, Connell McCluskey. Global analysis of within host virus models with cell-to-cell viral transmission. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3341-3357. doi: 10.3934/dcdsb.2014.19.3341

[12]

Hongjing Shi, Wanbiao Ma. An improved model of t cell development in the thymus and its stability analysis. Mathematical Biosciences & Engineering, 2006, 3 (1) : 237-248. doi: 10.3934/mbe.2006.3.237

[13]

Simone Göttlich, Ute Ziegler. Traffic light control: A case study. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 483-501. doi: 10.3934/dcdss.2014.7.483

[14]

Qingming Gou, Wendi Wang. Global stability of two epidemic models. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 333-345. doi: 10.3934/dcdsb.2007.8.333

[15]

J.E. Muñoz Rivera, Reinhard Racke. Global stability for damped Timoshenko systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1625-1639. doi: 10.3934/dcds.2003.9.1625

[16]

Feng-Bin Wang, Sze-Bi Hsu, Wendi Wang. Dynamics of harmful algae with seasonal temperature variations in the cove-main lake. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 313-335. doi: 10.3934/dcdsb.2016.21.313

[17]

Kolade M. Owolabi, Kailash C. Patidar, Albert Shikongo. Efficient numerical method for a model arising in biological stoichiometry of tumour dynamics. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 591-613. doi: 10.3934/dcdss.2019038

[18]

Edoardo Mainini, Hideki Murakawa, Paolo Piovano, Ulisse Stefanelli. Carbon-nanotube geometries: Analytical and numerical results. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 141-160. doi: 10.3934/dcdss.2017008

[19]

Huaying Guo, Jin Liang. An optimal control model of carbon reduction and trading. Mathematical Control & Related Fields, 2016, 6 (4) : 535-550. doi: 10.3934/mcrf.2016015

[20]

Xiaoli Yang, Jin Liang, Bei Hu. Minimization of carbon abatement cost: Modeling, analysis and simulation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2939-2969. doi: 10.3934/dcdsb.2017158

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]