-
Previous Article
Modeling of mosquitoes with dominant or recessive Transgenes and Allee effects
- MBE Home
- This Issue
-
Next Article
Discrete host-parasitoid models with Allee effects and age structure in the host
Multistability, oscillations and bifurcations in feedback loops
1. | Department of Mathematics, University of Oklahoma, Norman, OK 73019-0315, United States |
2. | School of Mathematics, University of Manchester, Manchester, M13 9PL, United Kingdom |
[1] |
Qingqing Li, Tianshou Zhou. Interlocked multi-node positive and negative feedback loops facilitate oscillations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3139-3155. doi: 10.3934/dcdsb.2018304 |
[2] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[3] |
Fernando Antoneli, Ana Paula S. Dias, Rui Paiva. Coupled cell networks: Hopf bifurcation and interior symmetry. Conference Publications, 2011, 2011 (Special) : 71-78. doi: 10.3934/proc.2011.2011.71 |
[4] |
Freddy Dumortier, Robert Roussarie. Bifurcation of relaxation oscillations in dimension two. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 631-674. doi: 10.3934/dcds.2007.19.631 |
[5] |
Sanling Yuan, Yongli Song, Junhui Li. Oscillations in a plasmid turbidostat model with delayed feedback control. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 893-914. doi: 10.3934/dcdsb.2011.15.893 |
[6] |
Willard S. Keeran, Patrick D. Leenheer, Sergei S. Pilyugin. Feedback-mediated coexistence and oscillations in the chemostat. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 321-351. doi: 10.3934/dcdsb.2008.9.321 |
[7] |
Guy Katriel. Stability of synchronized oscillations in networks of phase-oscillators. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 353-364. doi: 10.3934/dcdsb.2005.5.353 |
[8] |
Jiayuan Yan, Ding-Xue Zhang, Bin Hu, Zhi-Hong Guan, Xin-Ming Cheng. State bounding for time-delay impulsive and switching genetic regulatory networks with exogenous disturbance. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1749-1765. doi: 10.3934/dcdss.2022004 |
[9] |
Orit Lavi, Doron Ginsberg, Yoram Louzoun. Regulation of modular Cyclin and CDK feedback loops by an E2F transcription oscillator in the mammalian cell cycle. Mathematical Biosciences & Engineering, 2011, 8 (2) : 445-461. doi: 10.3934/mbe.2011.8.445 |
[10] |
Bernold Fiedler, Isabelle Schneider. Stabilized rapid oscillations in a delay equation: Feedback control by a small resonant delay. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1145-1185. doi: 10.3934/dcdss.2020068 |
[11] |
Rachel Kuske, Peter Borowski. Survival of subthreshold oscillations: The interplay of noise, bifurcation structure, and return mechanism. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 873-895. doi: 10.3934/dcdss.2009.2.873 |
[12] |
Rebecca McKay, Theodore Kolokolnikov, Paul Muir. Interface oscillations in reaction-diffusion systems above the Hopf bifurcation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2523-2543. doi: 10.3934/dcdsb.2012.17.2523 |
[13] |
Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933 |
[14] |
Fatihcan M. Atay. Delayed feedback control near Hopf bifurcation. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 197-205. doi: 10.3934/dcdss.2008.1.197 |
[15] |
Yong Zhao, Qishao Lu. Periodic oscillations in a class of fuzzy neural networks under impulsive control. Conference Publications, 2011, 2011 (Special) : 1457-1466. doi: 10.3934/proc.2011.2011.1457 |
[16] |
Julien Coatléven, Claudio Altafini. A kinetic mechanism inducing oscillations in simple chemical reactions networks. Mathematical Biosciences & Engineering, 2010, 7 (2) : 301-312. doi: 10.3934/mbe.2010.7.301 |
[17] |
Kaïs Ammari, Mohamed Jellouli, Michel Mehrenberger. Feedback stabilization of a coupled string-beam system. Networks and Heterogeneous Media, 2009, 4 (1) : 19-34. doi: 10.3934/nhm.2009.4.19 |
[18] |
Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3641-3657. doi: 10.3934/dcdss.2020434 |
[19] |
Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6047-6056. doi: 10.3934/dcdsb.2021001 |
[20] |
Oskar Weinberger, Peter Ashwin. From coupled networks of systems to networks of states in phase space. Discrete and Continuous Dynamical Systems - B, 2018, 23 (5) : 2021-2041. doi: 10.3934/dcdsb.2018193 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]