Advanced Search
Article Contents
Article Contents

Global stability of an $SIR$ epidemic model with delay and general nonlinear incidence

Abstract Related Papers Cited by
  • An SIR model with distributed delay and a general incidence function is studied. Conditions are given under which the system exhibits threshold behaviour: the disease-free equilibrium is globally asymptotically stable if R0<1 and globally attracting if R0=1; if R0>1, then the unique endemic equilibrium is globally asymptotically stable. The global stability proofs use a Lyapunov functional and do not require uniform persistence to be shown a priori. It is shown that the given conditions are satisfied by several common forms of the incidence function.
    Mathematics Subject Classification: Primary: 34K20, 92D30.


    \begin{equation} \\ \end{equation}
  • [1]

    F. V. Atkinson and J. R. Haddock, On determining phase spaces for functional differential equations, Funkcial. Ekvac., 31 (1988), 331-347.


    E. Beretta, Hara T., Ma W. and Y. Takeuchi, Global asymptotic stability of an SIR epidemic model with distributed time delay, Nonlinear Anal., 47 (2001), 4107-4115.doi: doi:10.1016/S0362-546X(01)00528-4.


    V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43-61.doi: doi:10.1016/0025-5564(78)90006-8.


    K. L. Cooke, Stability analysis for a vector disease model, Rocky Mount. J. Math., 9 (1979), 31-42.doi: doi:10.1216/RMJ-1979-9-1-31.


    O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $\mathcal R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.doi: doi:10.1007/BF00178324.


    Z. Feng and H. Thieme, Endemic models for the spread of infectious diseases with arbitrarily distributed disease stages I: General theory, SIAM J. Appl. Math., 61 (2000), 803-833.


    B.-S. Goh, Stability of some multispecies population models, in "Modeling and Differential Equations in Biology," Dekker, New York, 1980.


    J. Hale and S. Verduyn Lunel, "Introduction to Functional Differential Equations," Springer-Verlag, 1993.


    J. K. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac., 21 (1978), 11-41.


    H. W. Hethcote, Qualitative analyses of communicable disease models, Math. Biosci., 28 (1976), 335-356.doi: doi:10.1016/0025-5564(76)90132-2.


    H. W. Hethcote, The mathematics of infectious diseases, SIAM Review, 42 (2000), 599-653.doi: doi:10.1137/S0036144500371907.


    Y. Hino, S. Murakami and T. Naito, "Functional Differential Equations with Infinite Delay," Springer-Verlag, 1993.


    G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global stabilty for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72 (2009), 1192-1207.doi: doi:10.1007/s11538-009-9487-6.


    A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., 69 (2007), 1871-1886.doi: doi:10.1007/s11538-007-9196-y.


    A. Korobeinikov and P. K. Maini, Nonlinear incidence and stability of infectious disease models, Math. Med. and Biol., 22 (2005), 113-128.doi: doi:10.1093/imammb/dqi001.


    Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics," Mathematics in Science and Engineering, vol 191, Academic Press, Cambridge, 1993.


    M. Y. Li and H. Shu, Impact of intracellular delays and target-cell dynamics on in vivo viral infections, SIAM J. Appl. Math., 70 (2010), 2434-2448.doi: doi:10.1137/090779322.


    W. Ma, Y. Takeuchi, T. Hara and E. Beretta, Permanence of an SIR epidemic model with distributed time delays, Tohoku Math. J., 54 (2002), 581-591.doi: doi:10.2748/tmj/1113247650.


    P. Magal, C. C. McCluskey and G. Webb, Liapunov functional and global asymptotic stability for an infection-age model, Applicable Analysis, 89 (2010), 1109-1140.doi: doi:10.1080/00036810903208122.


    C. C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. and Eng., 6 (2009), 603-610.doi: doi:10.3934/mbe.2009.6.603.


    C. C. McCluskey, Complete global stability for an SIR epidemic model with delay - distributed or discrete, Nonlinear Anal. RWA, 11 (2010), 55-59.doi: doi:10.1016/j.nonrwa.2008.10.014.


    C. C. McCluskey, Global stability for an SIR epidemic model with delay and nonlinear incidence, Nonlinear Anal. RWA, 11 (2010), 3106-3109.doi: doi:10.1016/j.nonrwa.2009.11.005.


    Y. Takeuchi, W. Ma and E. Beretta, Global asymptotic properties of a delay SIR epidemic model with finite incubation times, Nonlinear Anal., 42 (2000), 931-947.doi: doi:10.1016/S0362-546X(99)00138-8.


    R. Xu and Z. Ma, Global stability of a SIR epidemic model with nonlinear incidence rate and time delay, Nonlinear Anal. RWA, 10 (2009), 3175-3189.doi: doi:10.1016/j.nonrwa.2008.10.013.

  • 加载中

Article Metrics

HTML views() PDF downloads(48) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint