\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global stability of an $SIR$ epidemic model with delay and general nonlinear incidence

Abstract Related Papers Cited by
  • An SIR model with distributed delay and a general incidence function is studied. Conditions are given under which the system exhibits threshold behaviour: the disease-free equilibrium is globally asymptotically stable if R0<1 and globally attracting if R0=1; if R0>1, then the unique endemic equilibrium is globally asymptotically stable. The global stability proofs use a Lyapunov functional and do not require uniform persistence to be shown a priori. It is shown that the given conditions are satisfied by several common forms of the incidence function.
    Mathematics Subject Classification: Primary: 34K20, 92D30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. V. Atkinson and J. R. Haddock, On determining phase spaces for functional differential equations, Funkcial. Ekvac., 31 (1988), 331-347.

    [2]

    E. Beretta, Hara T., Ma W. and Y. Takeuchi, Global asymptotic stability of an SIR epidemic model with distributed time delay, Nonlinear Anal., 47 (2001), 4107-4115.doi: doi:10.1016/S0362-546X(01)00528-4.

    [3]

    V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43-61.doi: doi:10.1016/0025-5564(78)90006-8.

    [4]

    K. L. Cooke, Stability analysis for a vector disease model, Rocky Mount. J. Math., 9 (1979), 31-42.doi: doi:10.1216/RMJ-1979-9-1-31.

    [5]

    O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $\mathcal R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.doi: doi:10.1007/BF00178324.

    [6]

    Z. Feng and H. Thieme, Endemic models for the spread of infectious diseases with arbitrarily distributed disease stages I: General theory, SIAM J. Appl. Math., 61 (2000), 803-833.

    [7]

    B.-S. Goh, Stability of some multispecies population models, in "Modeling and Differential Equations in Biology," Dekker, New York, 1980.

    [8]

    J. Hale and S. Verduyn Lunel, "Introduction to Functional Differential Equations," Springer-Verlag, 1993.

    [9]

    J. K. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac., 21 (1978), 11-41.

    [10]

    H. W. Hethcote, Qualitative analyses of communicable disease models, Math. Biosci., 28 (1976), 335-356.doi: doi:10.1016/0025-5564(76)90132-2.

    [11]

    H. W. Hethcote, The mathematics of infectious diseases, SIAM Review, 42 (2000), 599-653.doi: doi:10.1137/S0036144500371907.

    [12]

    Y. Hino, S. Murakami and T. Naito, "Functional Differential Equations with Infinite Delay," Springer-Verlag, 1993.

    [13]

    G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global stabilty for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72 (2009), 1192-1207.doi: doi:10.1007/s11538-009-9487-6.

    [14]

    A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., 69 (2007), 1871-1886.doi: doi:10.1007/s11538-007-9196-y.

    [15]

    A. Korobeinikov and P. K. Maini, Nonlinear incidence and stability of infectious disease models, Math. Med. and Biol., 22 (2005), 113-128.doi: doi:10.1093/imammb/dqi001.

    [16]

    Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics," Mathematics in Science and Engineering, vol 191, Academic Press, Cambridge, 1993.

    [17]

    M. Y. Li and H. Shu, Impact of intracellular delays and target-cell dynamics on in vivo viral infections, SIAM J. Appl. Math., 70 (2010), 2434-2448.doi: doi:10.1137/090779322.

    [18]

    W. Ma, Y. Takeuchi, T. Hara and E. Beretta, Permanence of an SIR epidemic model with distributed time delays, Tohoku Math. J., 54 (2002), 581-591.doi: doi:10.2748/tmj/1113247650.

    [19]

    P. Magal, C. C. McCluskey and G. Webb, Liapunov functional and global asymptotic stability for an infection-age model, Applicable Analysis, 89 (2010), 1109-1140.doi: doi:10.1080/00036810903208122.

    [20]

    C. C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. and Eng., 6 (2009), 603-610.doi: doi:10.3934/mbe.2009.6.603.

    [21]

    C. C. McCluskey, Complete global stability for an SIR epidemic model with delay - distributed or discrete, Nonlinear Anal. RWA, 11 (2010), 55-59.doi: doi:10.1016/j.nonrwa.2008.10.014.

    [22]

    C. C. McCluskey, Global stability for an SIR epidemic model with delay and nonlinear incidence, Nonlinear Anal. RWA, 11 (2010), 3106-3109.doi: doi:10.1016/j.nonrwa.2009.11.005.

    [23]

    Y. Takeuchi, W. Ma and E. Beretta, Global asymptotic properties of a delay SIR epidemic model with finite incubation times, Nonlinear Anal., 42 (2000), 931-947.doi: doi:10.1016/S0362-546X(99)00138-8.

    [24]

    R. Xu and Z. Ma, Global stability of a SIR epidemic model with nonlinear incidence rate and time delay, Nonlinear Anal. RWA, 10 (2009), 3175-3189.doi: doi:10.1016/j.nonrwa.2008.10.013.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(48) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return