• Previous Article
    Time variations in the generation time of an infectious disease: Implications for sampling to appropriately quantify transmission potential
  • MBE Home
  • This Issue
  • Next Article
    A stoichiometrically derived algal growth model and its global analysis
2010, 7(4): 837-850. doi: 10.3934/mbe.2010.7.837

Global stability of an $SIR$ epidemic model with delay and general nonlinear incidence

1. 

Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario, Canada

Received  March 2010 Revised  July 2010 Published  October 2010

An SIR model with distributed delay and a general incidence function is studied. Conditions are given under which the system exhibits threshold behaviour: the disease-free equilibrium is globally asymptotically stable if R0<1 and globally attracting if R0=1; if R0>1, then the unique endemic equilibrium is globally asymptotically stable. The global stability proofs use a Lyapunov functional and do not require uniform persistence to be shown a priori. It is shown that the given conditions are satisfied by several common forms of the incidence function.
Citation: C. Connell McCluskey. Global stability of an $SIR$ epidemic model with delay and general nonlinear incidence. Mathematical Biosciences & Engineering, 2010, 7 (4) : 837-850. doi: 10.3934/mbe.2010.7.837
References:
[1]

F. V. Atkinson and J. R. Haddock, On determining phase spaces for functional differential equations,, Funkcial. Ekvac., 31 (1988), 331.   Google Scholar

[2]

E. Beretta, Hara T., Ma W. and Y. Takeuchi, Global asymptotic stability of an SIR epidemic model with distributed time delay,, Nonlinear Anal., 47 (2001), 4107.  doi: doi:10.1016/S0362-546X(01)00528-4.  Google Scholar

[3]

V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model,, Math. Biosci., 42 (1978), 43.  doi: doi:10.1016/0025-5564(78)90006-8.  Google Scholar

[4]

K. L. Cooke, Stability analysis for a vector disease model,, Rocky Mount. J. Math., 9 (1979), 31.  doi: doi:10.1216/RMJ-1979-9-1-31.  Google Scholar

[5]

O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $\mathcal R_0$ in models for infectious diseases in heterogeneous populations,, J. Math. Biol., 28 (1990), 365.  doi: doi:10.1007/BF00178324.  Google Scholar

[6]

Z. Feng and H. Thieme, Endemic models for the spread of infectious diseases with arbitrarily distributed disease stages I: General theory,, SIAM J. Appl. Math., 61 (2000), 803.   Google Scholar

[7]

B.-S. Goh, Stability of some multispecies population models,, in, (1980).   Google Scholar

[8]

J. Hale and S. Verduyn Lunel, "Introduction to Functional Differential Equations,", Springer-Verlag, (1993).   Google Scholar

[9]

J. K. Hale and J. Kato, Phase space for retarded equations with infinite delay,, Funkcial. Ekvac., 21 (1978), 11.   Google Scholar

[10]

H. W. Hethcote, Qualitative analyses of communicable disease models,, Math. Biosci., 28 (1976), 335.  doi: doi:10.1016/0025-5564(76)90132-2.  Google Scholar

[11]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Review, 42 (2000), 599.  doi: doi:10.1137/S0036144500371907.  Google Scholar

[12]

Y. Hino, S. Murakami and T. Naito, "Functional Differential Equations with Infinite Delay,", Springer-Verlag, (1993).   Google Scholar

[13]

G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global stabilty for delay SIR and SEIR epidemic models with nonlinear incidence rate,, Bull. Math. Biol., 72 (2009), 1192.  doi: doi:10.1007/s11538-009-9487-6.  Google Scholar

[14]

A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence,, Bull. Math. Biol., 69 (2007), 1871.  doi: doi:10.1007/s11538-007-9196-y.  Google Scholar

[15]

A. Korobeinikov and P. K. Maini, Nonlinear incidence and stability of infectious disease models,, Math. Med. and Biol., 22 (2005), 113.  doi: doi:10.1093/imammb/dqi001.  Google Scholar

[16]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,", Mathematics in Science and Engineering, 191 (1993).   Google Scholar

[17]

M. Y. Li and H. Shu, Impact of intracellular delays and target-cell dynamics on in vivo viral infections,, SIAM J. Appl. Math., 70 (2010), 2434.  doi: doi:10.1137/090779322.  Google Scholar

[18]

W. Ma, Y. Takeuchi, T. Hara and E. Beretta, Permanence of an SIR epidemic model with distributed time delays,, Tohoku Math. J., 54 (2002), 581.  doi: doi:10.2748/tmj/1113247650.  Google Scholar

[19]

P. Magal, C. C. McCluskey and G. Webb, Liapunov functional and global asymptotic stability for an infection-age model,, Applicable Analysis, 89 (2010), 1109.  doi: doi:10.1080/00036810903208122.  Google Scholar

[20]

C. C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay,, Math. Biosci. and Eng., 6 (2009), 603.  doi: doi:10.3934/mbe.2009.6.603.  Google Scholar

[21]

C. C. McCluskey, Complete global stability for an SIR epidemic model with delay - distributed or discrete,, Nonlinear Anal. RWA, 11 (2010), 55.  doi: doi:10.1016/j.nonrwa.2008.10.014.  Google Scholar

[22]

C. C. McCluskey, Global stability for an SIR epidemic model with delay and nonlinear incidence,, Nonlinear Anal. RWA, 11 (2010), 3106.  doi: doi:10.1016/j.nonrwa.2009.11.005.  Google Scholar

[23]

Y. Takeuchi, W. Ma and E. Beretta, Global asymptotic properties of a delay SIR epidemic model with finite incubation times,, Nonlinear Anal., 42 (2000), 931.  doi: doi:10.1016/S0362-546X(99)00138-8.  Google Scholar

[24]

R. Xu and Z. Ma, Global stability of a SIR epidemic model with nonlinear incidence rate and time delay,, Nonlinear Anal. RWA, 10 (2009), 3175.  doi: doi:10.1016/j.nonrwa.2008.10.013.  Google Scholar

show all references

References:
[1]

F. V. Atkinson and J. R. Haddock, On determining phase spaces for functional differential equations,, Funkcial. Ekvac., 31 (1988), 331.   Google Scholar

[2]

E. Beretta, Hara T., Ma W. and Y. Takeuchi, Global asymptotic stability of an SIR epidemic model with distributed time delay,, Nonlinear Anal., 47 (2001), 4107.  doi: doi:10.1016/S0362-546X(01)00528-4.  Google Scholar

[3]

V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model,, Math. Biosci., 42 (1978), 43.  doi: doi:10.1016/0025-5564(78)90006-8.  Google Scholar

[4]

K. L. Cooke, Stability analysis for a vector disease model,, Rocky Mount. J. Math., 9 (1979), 31.  doi: doi:10.1216/RMJ-1979-9-1-31.  Google Scholar

[5]

O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $\mathcal R_0$ in models for infectious diseases in heterogeneous populations,, J. Math. Biol., 28 (1990), 365.  doi: doi:10.1007/BF00178324.  Google Scholar

[6]

Z. Feng and H. Thieme, Endemic models for the spread of infectious diseases with arbitrarily distributed disease stages I: General theory,, SIAM J. Appl. Math., 61 (2000), 803.   Google Scholar

[7]

B.-S. Goh, Stability of some multispecies population models,, in, (1980).   Google Scholar

[8]

J. Hale and S. Verduyn Lunel, "Introduction to Functional Differential Equations,", Springer-Verlag, (1993).   Google Scholar

[9]

J. K. Hale and J. Kato, Phase space for retarded equations with infinite delay,, Funkcial. Ekvac., 21 (1978), 11.   Google Scholar

[10]

H. W. Hethcote, Qualitative analyses of communicable disease models,, Math. Biosci., 28 (1976), 335.  doi: doi:10.1016/0025-5564(76)90132-2.  Google Scholar

[11]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Review, 42 (2000), 599.  doi: doi:10.1137/S0036144500371907.  Google Scholar

[12]

Y. Hino, S. Murakami and T. Naito, "Functional Differential Equations with Infinite Delay,", Springer-Verlag, (1993).   Google Scholar

[13]

G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global stabilty for delay SIR and SEIR epidemic models with nonlinear incidence rate,, Bull. Math. Biol., 72 (2009), 1192.  doi: doi:10.1007/s11538-009-9487-6.  Google Scholar

[14]

A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence,, Bull. Math. Biol., 69 (2007), 1871.  doi: doi:10.1007/s11538-007-9196-y.  Google Scholar

[15]

A. Korobeinikov and P. K. Maini, Nonlinear incidence and stability of infectious disease models,, Math. Med. and Biol., 22 (2005), 113.  doi: doi:10.1093/imammb/dqi001.  Google Scholar

[16]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,", Mathematics in Science and Engineering, 191 (1993).   Google Scholar

[17]

M. Y. Li and H. Shu, Impact of intracellular delays and target-cell dynamics on in vivo viral infections,, SIAM J. Appl. Math., 70 (2010), 2434.  doi: doi:10.1137/090779322.  Google Scholar

[18]

W. Ma, Y. Takeuchi, T. Hara and E. Beretta, Permanence of an SIR epidemic model with distributed time delays,, Tohoku Math. J., 54 (2002), 581.  doi: doi:10.2748/tmj/1113247650.  Google Scholar

[19]

P. Magal, C. C. McCluskey and G. Webb, Liapunov functional and global asymptotic stability for an infection-age model,, Applicable Analysis, 89 (2010), 1109.  doi: doi:10.1080/00036810903208122.  Google Scholar

[20]

C. C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay,, Math. Biosci. and Eng., 6 (2009), 603.  doi: doi:10.3934/mbe.2009.6.603.  Google Scholar

[21]

C. C. McCluskey, Complete global stability for an SIR epidemic model with delay - distributed or discrete,, Nonlinear Anal. RWA, 11 (2010), 55.  doi: doi:10.1016/j.nonrwa.2008.10.014.  Google Scholar

[22]

C. C. McCluskey, Global stability for an SIR epidemic model with delay and nonlinear incidence,, Nonlinear Anal. RWA, 11 (2010), 3106.  doi: doi:10.1016/j.nonrwa.2009.11.005.  Google Scholar

[23]

Y. Takeuchi, W. Ma and E. Beretta, Global asymptotic properties of a delay SIR epidemic model with finite incubation times,, Nonlinear Anal., 42 (2000), 931.  doi: doi:10.1016/S0362-546X(99)00138-8.  Google Scholar

[24]

R. Xu and Z. Ma, Global stability of a SIR epidemic model with nonlinear incidence rate and time delay,, Nonlinear Anal. RWA, 10 (2009), 3175.  doi: doi:10.1016/j.nonrwa.2008.10.013.  Google Scholar

[1]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[2]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[3]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[4]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[5]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[6]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[7]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[8]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[9]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[10]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[11]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[12]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[13]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[14]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[15]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[16]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[17]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[18]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[19]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[20]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (37)

Other articles
by authors

[Back to Top]