-
Previous Article
Antibiotic cycling versus mixing: The difficulty of using mathematical models to definitively quantify their relative merits
- MBE Home
- This Issue
-
Next Article
An elementary approach to modeling drug resistance in cancer
Rotating antibiotics does not minimize selection for resistance
1. | Institute of Integrative Biology, ETH Zürich, CH-8092 Zurich, Switzerland, Switzerland, Switzerland |
References:
[1] |
R. Beardmore and R. Peñal-Miller, Rotating antibiotics selects optimally against antibiotic resistance, Mathematical Biosciences and Engineering, 7 (2010), 527-552.
doi: doi:10.3934/mbe.2010.7.527. |
[2] |
S. Bonhoeffer, M. Lipsitch and B. R. Levin, Evaluating treatment protocols to prevent antibiotic resistance, PNAS, 94 (1997), 12106-12111.
doi: doi:10.1073/pnas.94.22.12106. |
[3] |
C. T. Bergstrom, M. Lo and M. Lipsitch, Ecological theory suggests that antimicrobial cycling will not reduce antimicrobial resistance in hospitals, PNAS, 101 (2004), 13285-13290.
doi: doi:10.1073/pnas.0402298101. |
show all references
References:
[1] |
R. Beardmore and R. Peñal-Miller, Rotating antibiotics selects optimally against antibiotic resistance, Mathematical Biosciences and Engineering, 7 (2010), 527-552.
doi: doi:10.3934/mbe.2010.7.527. |
[2] |
S. Bonhoeffer, M. Lipsitch and B. R. Levin, Evaluating treatment protocols to prevent antibiotic resistance, PNAS, 94 (1997), 12106-12111.
doi: doi:10.1073/pnas.94.22.12106. |
[3] |
C. T. Bergstrom, M. Lo and M. Lipsitch, Ecological theory suggests that antimicrobial cycling will not reduce antimicrobial resistance in hospitals, PNAS, 101 (2004), 13285-13290.
doi: doi:10.1073/pnas.0402298101. |
[1] |
Robert E. Beardmore, Rafael Peña-Miller. Rotating antibiotics selects optimally against antibiotic resistance, in theory. Mathematical Biosciences & Engineering, 2010, 7 (3) : 527-552. doi: 10.3934/mbe.2010.7.527 |
[2] |
Urszula Ledzewicz, Heinz Schättler. Drug resistance in cancer chemotherapy as an optimal control problem. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 129-150. doi: 10.3934/dcdsb.2006.6.129 |
[3] |
Cristian Tomasetti, Doron Levy. An elementary approach to modeling drug resistance in cancer. Mathematical Biosciences & Engineering, 2010, 7 (4) : 905-918. doi: 10.3934/mbe.2010.7.905 |
[4] |
Avner Friedman, Najat Ziyadi, Khalid Boushaba. A model of drug resistance with infection by health care workers. Mathematical Biosciences & Engineering, 2010, 7 (4) : 779-792. doi: 10.3934/mbe.2010.7.779 |
[5] |
Zhenzhen Chen, Sze-Bi Hsu, Ya-Tang Yang. The continuous morbidostat: A chemostat with controlled drug application to select for drug resistance mutants. Communications on Pure and Applied Analysis, 2020, 19 (1) : 203-220. doi: 10.3934/cpaa.2020011 |
[6] |
Nicolas Bacaër, Cheikh Sokhna. A reaction-diffusion system modeling the spread of resistance to an antimalarial drug. Mathematical Biosciences & Engineering, 2005, 2 (2) : 227-238. doi: 10.3934/mbe.2005.2.227 |
[7] |
Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier. On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach. Mathematical Biosciences & Engineering, 2017, 14 (1) : 217-235. doi: 10.3934/mbe.2017014 |
[8] |
Ami B. Shah, Katarzyna A. Rejniak, Jana L. Gevertz. Limiting the development of anti-cancer drug resistance in a spatial model of micrometastases. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1185-1206. doi: 10.3934/mbe.2016038 |
[9] |
Robert E. Beardmore, Rafael Peña-Miller. Antibiotic cycling versus mixing: The difficulty of using mathematical models to definitively quantify their relative merits. Mathematical Biosciences & Engineering, 2010, 7 (4) : 923-933. doi: 10.3934/mbe.2010.7.923 |
[10] |
Qi Deng, Zhipeng Qiu, Ting Guo, Libin Rong. Modeling within-host viral dynamics: The role of CTL immune responses in the evolution of drug resistance. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3543-3562. doi: 10.3934/dcdsb.2020245 |
[11] |
Timothy C. Reluga, Jan Medlock, Alison Galvani. The discounted reproductive number for epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (2) : 377-393. doi: 10.3934/mbe.2009.6.377 |
[12] |
Jacques Demongeot, Mohamad Ghassani, Mustapha Rachdi, Idir Ouassou, Carla Taramasco. Archimedean copula and contagion modeling in epidemiology. Networks and Heterogeneous Media, 2013, 8 (1) : 149-170. doi: 10.3934/nhm.2013.8.149 |
[13] |
Carlos M. Hernández-Suárez, Oliver Mendoza-Cano. Applications of occupancy urn models to epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (3) : 509-520. doi: 10.3934/mbe.2009.6.509 |
[14] |
Luca Gerardo-Giorda, Pierre Magal, Shigui Ruan, Ousmane Seydi, Glenn Webb. Preface: Population dynamics in epidemiology and ecology. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : i-ii. doi: 10.3934/dcdsb.2020125 |
[15] |
Krzysztof Frączek, Leonid Polterovich. Growth and mixing. Journal of Modern Dynamics, 2008, 2 (2) : 315-338. doi: 10.3934/jmd.2008.2.315 |
[16] |
John Boscoh H. Njagarah, Farai Nyabadza. Modelling the role of drug barons on the prevalence of drug epidemics. Mathematical Biosciences & Engineering, 2013, 10 (3) : 843-860. doi: 10.3934/mbe.2013.10.843 |
[17] |
S.M. Moghadas. Modelling the effect of imperfect vaccines on disease epidemiology. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 999-1012. doi: 10.3934/dcdsb.2004.4.999 |
[18] |
Timothy C. Reluga, Jan Medlock. Resistance mechanisms matter in SIR models. Mathematical Biosciences & Engineering, 2007, 4 (3) : 553-563. doi: 10.3934/mbe.2007.4.553 |
[19] |
Lambertus A. Peletier. Modeling drug-protein dynamics. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 191-207. doi: 10.3934/dcdss.2012.5.191 |
[20] |
Asaf Katz. On mixing and sparse ergodic theorems. Journal of Modern Dynamics, 2021, 17: 1-32. doi: 10.3934/jmd.2021001 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]