• Previous Article
    Antibiotic cycling versus mixing: The difficulty of using mathematical models to definitively quantify their relative merits
  • MBE Home
  • This Issue
  • Next Article
    An elementary approach to modeling drug resistance in cancer
2010, 7(4): 919-922. doi: 10.3934/mbe.2010.7.919

Rotating antibiotics does not minimize selection for resistance

1. 

Institute of Integrative Biology, ETH Zürich, CH-8092 Zurich, Switzerland, Switzerland, Switzerland

Received  August 2010 Revised  September 2010 Published  October 2010

N/A
Citation: Sebastian Bonhoeffer, Pia Abel zur Wiesch, Roger D. Kouyos. Rotating antibiotics does not minimize selection for resistance. Mathematical Biosciences & Engineering, 2010, 7 (4) : 919-922. doi: 10.3934/mbe.2010.7.919
References:
[1]

R. Beardmore and R. Peñal-Miller, Rotating antibiotics selects optimally against antibiotic resistance,, Mathematical Biosciences and Engineering, 7 (2010), 527.  doi: doi:10.3934/mbe.2010.7.527.  Google Scholar

[2]

S. Bonhoeffer, M. Lipsitch and B. R. Levin, Evaluating treatment protocols to prevent antibiotic resistance,, PNAS, 94 (1997), 12106.  doi: doi:10.1073/pnas.94.22.12106.  Google Scholar

[3]

C. T. Bergstrom, M. Lo and M. Lipsitch, Ecological theory suggests that antimicrobial cycling will not reduce antimicrobial resistance in hospitals,, PNAS, 101 (2004), 13285.  doi: doi:10.1073/pnas.0402298101.  Google Scholar

show all references

References:
[1]

R. Beardmore and R. Peñal-Miller, Rotating antibiotics selects optimally against antibiotic resistance,, Mathematical Biosciences and Engineering, 7 (2010), 527.  doi: doi:10.3934/mbe.2010.7.527.  Google Scholar

[2]

S. Bonhoeffer, M. Lipsitch and B. R. Levin, Evaluating treatment protocols to prevent antibiotic resistance,, PNAS, 94 (1997), 12106.  doi: doi:10.1073/pnas.94.22.12106.  Google Scholar

[3]

C. T. Bergstrom, M. Lo and M. Lipsitch, Ecological theory suggests that antimicrobial cycling will not reduce antimicrobial resistance in hospitals,, PNAS, 101 (2004), 13285.  doi: doi:10.1073/pnas.0402298101.  Google Scholar

[1]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[2]

Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (13)

[Back to Top]