- Previous Article
- MBE Home
- This Issue
-
Next Article
Rotating antibiotics does not minimize selection for resistance
Antibiotic cycling versus mixing: The difficulty of using mathematical models to definitively quantify their relative merits
1. | Department of Mathematics, Imperial College London, SW7 2AZ, London, United Kingdom |
As a result, we agree with the tenet of Bonhoefer et al. [1] that one should not apply the results of [2] to conclude that an antibiotic cycling policy that implements cycles of drug restriction and prioritisation on an ad-hoc basis can select against drug-resistant microbial pathogens in a clinical setting any better than random drug use. However, nor should we conclude that a random, per-patient drug-assignment protocol is the de facto optimal method for allocating antibiotics to patients in any general sense.
References:
[1] |
S. Bonhoeffer, P. S. Zur Wiesch and R. D. Kouyos, Rotating antibiotics does not minimize selection for resistance,, MBE, 7 (2010), 919. Google Scholar |
[2] |
R. E. Beardmore and R. Peña-Miller, Rotating antibiotics selects optimally against antibiotic resistance, in theory,, MBE, 7 (2010), 527.
doi: doi:10.3934/mbe.2010.7.527. |
[3] |
C. T. Bergstrom, M. Lo and M. Lipsitch, Ecological theory suggests that antimicrobial cycling will not reduce antimicrobial resistance in hospitals,, PNAS, 101 (2004), 13285.
doi: doi:10.1073/pnas.0402298101. |
[4] |
S. Bonhoeffer, M. Lipsitch and B. R. Levin, Evaluating treatment protocols to prevent antibiotic resistance,, PNAS, 94 (1997), 12106.
doi: doi:10.1073/pnas.94.22.12106. |
[5] |
E. M. Brown and D. Nathwani, Antibiotic cycling or rotation: A systematic review of the evidence of efficacy,, J. Antimicrob. Chemother., 55 (2005), 6.
doi: doi:10.1093/jac/dkh482. |
[6] |
M. Niederman, Is 'crop rotation' of antibiotics the solution to a 'resistant' problem in the ICU?,, Am. J. Respir. Crit. Care Med., 156 (1997), 1029. Google Scholar |
[7] |
T. Cohen and M. Murray, Modeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness,, Nat. Med., 10 (2004), 1117.
doi: doi:10.1038/nm1110. |
[8] |
P. Huovinen, Mathematical model tell us the future!,, J. Antimicrob. Chemother., 56 (2005), 257.
doi: doi:10.1093/jac/dki230. |
[9] |
J. T. Magee, The resistance ratchet: Theoretical implications of cyclic selection pressure,, J. Antimicrob. Chemother., 56 (2005), 427.
doi: doi:10.1093/jac/dki229. |
[10] |
J. A. Martinez, J. M. Nicolas, F. Marco, J. P. Horcajada, G. Garcia-Segarra, A. Trilla, C. Codina, A. Torres and J. Mensa, Comparison of antimicrobial cycling and mixing strategies in two medical intensive care units,, Crit. Care Med., 34 (2006), 329.
doi: doi:10.1097/01.CCM.0000195010.63855.45. |
[11] |
M. H. Kollef, J. Vlasnik, L. Sharpless, C. Pasque, D. Murphy and V. Fraser, Scheduled change of antibiotic classes: A strategy to decrease the incidence of ventilator-associated pneumonia,, Am. J. Respir. Crit. Care Med., 156 (1997), 1040. Google Scholar |
[12] |
D. Lukkassen and P. Wall, On weak convergence of locally periodic functions,, J. Nonlinear Math. Phys, 9 (2002), 47. Google Scholar |
[13] |
R. G. Masterton, The new treatment paradigm and the role of carbapenems,, Int. J. Antimicrob. Agents, 33 (2009), 105.
doi: doi:10.1016/j.ijantimicag.2008.07.023. |
[14] |
M. G. Bergeron, Revolutionizing the practice of medicine through rapid ($<$ 1h) DNA-based diagnostics,, Clin. Invest. Med., 31 (2008). Google Scholar |
[15] |
Y. Takesue, H. Ohge, M. Sakashita, T. Sudo, Y. Murakami, K. Uemura and T. Sueda, Effect of antibiotic heterogeneity on the development of infections with antibiotic-resistant gram-negative organisms in a non-intensive care unit surgical ward,, World J. Surg., 30 (2006), 1269.
doi: doi:10.1007/s00268-005-0781-7. |
[16] |
Y. Takesue, K. Nakajima, K. Ichiki, M. Ishihara, Y. Wada, Y. Takahashi, T. Tsuchida, T and H. Ikeuchi, Impact of a hospital-wide programme of heterogeneous antibiotic use on the development of antibiotic-resistant Gram-negative bacteria,, J. Hosp. Infect., 75 (2010), 28.
doi: doi:10.1016/j.jhin.2009.11.022. |
show all references
References:
[1] |
S. Bonhoeffer, P. S. Zur Wiesch and R. D. Kouyos, Rotating antibiotics does not minimize selection for resistance,, MBE, 7 (2010), 919. Google Scholar |
[2] |
R. E. Beardmore and R. Peña-Miller, Rotating antibiotics selects optimally against antibiotic resistance, in theory,, MBE, 7 (2010), 527.
doi: doi:10.3934/mbe.2010.7.527. |
[3] |
C. T. Bergstrom, M. Lo and M. Lipsitch, Ecological theory suggests that antimicrobial cycling will not reduce antimicrobial resistance in hospitals,, PNAS, 101 (2004), 13285.
doi: doi:10.1073/pnas.0402298101. |
[4] |
S. Bonhoeffer, M. Lipsitch and B. R. Levin, Evaluating treatment protocols to prevent antibiotic resistance,, PNAS, 94 (1997), 12106.
doi: doi:10.1073/pnas.94.22.12106. |
[5] |
E. M. Brown and D. Nathwani, Antibiotic cycling or rotation: A systematic review of the evidence of efficacy,, J. Antimicrob. Chemother., 55 (2005), 6.
doi: doi:10.1093/jac/dkh482. |
[6] |
M. Niederman, Is 'crop rotation' of antibiotics the solution to a 'resistant' problem in the ICU?,, Am. J. Respir. Crit. Care Med., 156 (1997), 1029. Google Scholar |
[7] |
T. Cohen and M. Murray, Modeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness,, Nat. Med., 10 (2004), 1117.
doi: doi:10.1038/nm1110. |
[8] |
P. Huovinen, Mathematical model tell us the future!,, J. Antimicrob. Chemother., 56 (2005), 257.
doi: doi:10.1093/jac/dki230. |
[9] |
J. T. Magee, The resistance ratchet: Theoretical implications of cyclic selection pressure,, J. Antimicrob. Chemother., 56 (2005), 427.
doi: doi:10.1093/jac/dki229. |
[10] |
J. A. Martinez, J. M. Nicolas, F. Marco, J. P. Horcajada, G. Garcia-Segarra, A. Trilla, C. Codina, A. Torres and J. Mensa, Comparison of antimicrobial cycling and mixing strategies in two medical intensive care units,, Crit. Care Med., 34 (2006), 329.
doi: doi:10.1097/01.CCM.0000195010.63855.45. |
[11] |
M. H. Kollef, J. Vlasnik, L. Sharpless, C. Pasque, D. Murphy and V. Fraser, Scheduled change of antibiotic classes: A strategy to decrease the incidence of ventilator-associated pneumonia,, Am. J. Respir. Crit. Care Med., 156 (1997), 1040. Google Scholar |
[12] |
D. Lukkassen and P. Wall, On weak convergence of locally periodic functions,, J. Nonlinear Math. Phys, 9 (2002), 47. Google Scholar |
[13] |
R. G. Masterton, The new treatment paradigm and the role of carbapenems,, Int. J. Antimicrob. Agents, 33 (2009), 105.
doi: doi:10.1016/j.ijantimicag.2008.07.023. |
[14] |
M. G. Bergeron, Revolutionizing the practice of medicine through rapid ($<$ 1h) DNA-based diagnostics,, Clin. Invest. Med., 31 (2008). Google Scholar |
[15] |
Y. Takesue, H. Ohge, M. Sakashita, T. Sudo, Y. Murakami, K. Uemura and T. Sueda, Effect of antibiotic heterogeneity on the development of infections with antibiotic-resistant gram-negative organisms in a non-intensive care unit surgical ward,, World J. Surg., 30 (2006), 1269.
doi: doi:10.1007/s00268-005-0781-7. |
[16] |
Y. Takesue, K. Nakajima, K. Ichiki, M. Ishihara, Y. Wada, Y. Takahashi, T. Tsuchida, T and H. Ikeuchi, Impact of a hospital-wide programme of heterogeneous antibiotic use on the development of antibiotic-resistant Gram-negative bacteria,, J. Hosp. Infect., 75 (2010), 28.
doi: doi:10.1016/j.jhin.2009.11.022. |
[1] |
Robert E. Beardmore, Rafael Peña-Miller. Rotating antibiotics selects optimally against antibiotic resistance, in theory. Mathematical Biosciences & Engineering, 2010, 7 (3) : 527-552. doi: 10.3934/mbe.2010.7.527 |
[2] |
Michele L. Joyner, Cammey C. Manning, Whitney Forbes, Michelle Maiden, Ariel N. Nikas. A physiologically-based pharmacokinetic model for the antibiotic ertapenem. Mathematical Biosciences & Engineering, 2016, 13 (1) : 119-133. doi: 10.3934/mbe.2016.13.119 |
[3] |
Mudassar Imran, Hal L. Smith. A model of optimal dosing of antibiotic treatment in biofilm. Mathematical Biosciences & Engineering, 2014, 11 (3) : 547-571. doi: 10.3934/mbe.2014.11.547 |
[4] |
Mudassar Imran, Hal L. Smith. The dynamics of bacterial infection, innate immune response, and antibiotic treatment. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 127-143. doi: 10.3934/dcdsb.2007.8.127 |
[5] |
Michele L. Joyner, Cammey C. Manning, Brandi N. Canter. Modeling the effects of introducing a new antibiotic in a hospital setting: A case study. Mathematical Biosciences & Engineering, 2012, 9 (3) : 601-625. doi: 10.3934/mbe.2012.9.601 |
[6] |
Kaifa Wang, Aijun Fan. Uniform persistence and periodic solution of chemostat-type model with antibiotic. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 789-795. doi: 10.3934/dcdsb.2004.4.789 |
[7] |
Colette Calmelet, John Hotchkiss, Philip Crooke. A mathematical model for antibiotic control of bacteria in peritoneal dialysis associated peritonitis. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1449-1464. doi: 10.3934/mbe.2014.11.1449 |
[8] |
Urszula Ledzewicz, Heinz Schättler. Drug resistance in cancer chemotherapy as an optimal control problem. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 129-150. doi: 10.3934/dcdsb.2006.6.129 |
[9] |
Cristian Tomasetti, Doron Levy. An elementary approach to modeling drug resistance in cancer. Mathematical Biosciences & Engineering, 2010, 7 (4) : 905-918. doi: 10.3934/mbe.2010.7.905 |
[10] |
Avner Friedman, Najat Ziyadi, Khalid Boushaba. A model of drug resistance with infection by health care workers. Mathematical Biosciences & Engineering, 2010, 7 (4) : 779-792. doi: 10.3934/mbe.2010.7.779 |
[11] |
Zhenzhen Chen, Sze-Bi Hsu, Ya-Tang Yang. The continuous morbidostat: A chemostat with controlled drug application to select for drug resistance mutants. Communications on Pure & Applied Analysis, 2020, 19 (1) : 203-220. doi: 10.3934/cpaa.2020011 |
[12] |
Nicolas Bacaër, Cheikh Sokhna. A reaction-diffusion system modeling the spread of resistance to an antimalarial drug. Mathematical Biosciences & Engineering, 2005, 2 (2) : 227-238. doi: 10.3934/mbe.2005.2.227 |
[13] |
Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier. On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach. Mathematical Biosciences & Engineering, 2017, 14 (1) : 217-235. doi: 10.3934/mbe.2017014 |
[14] |
Ami B. Shah, Katarzyna A. Rejniak, Jana L. Gevertz. Limiting the development of anti-cancer drug resistance in a spatial model of micrometastases. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1185-1206. doi: 10.3934/mbe.2016038 |
[15] |
Timothy C. Reluga, Jan Medlock, Alison Galvani. The discounted reproductive number for epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (2) : 377-393. doi: 10.3934/mbe.2009.6.377 |
[16] |
Krzysztof Frączek, Leonid Polterovich. Growth and mixing. Journal of Modern Dynamics, 2008, 2 (2) : 315-338. doi: 10.3934/jmd.2008.2.315 |
[17] |
Jacques Demongeot, Mohamad Ghassani, Mustapha Rachdi, Idir Ouassou, Carla Taramasco. Archimedean copula and contagion modeling in epidemiology. Networks & Heterogeneous Media, 2013, 8 (1) : 149-170. doi: 10.3934/nhm.2013.8.149 |
[18] |
Carlos M. Hernández-Suárez, Oliver Mendoza-Cano. Applications of occupancy urn models to epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (3) : 509-520. doi: 10.3934/mbe.2009.6.509 |
[19] |
John Boscoh H. Njagarah, Farai Nyabadza. Modelling the role of drug barons on the prevalence of drug epidemics. Mathematical Biosciences & Engineering, 2013, 10 (3) : 843-860. doi: 10.3934/mbe.2013.10.843 |
[20] |
Timothy C. Reluga, Jan Medlock. Resistance mechanisms matter in SIR models. Mathematical Biosciences & Engineering, 2007, 4 (3) : 553-563. doi: 10.3934/mbe.2007.4.553 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]