-
Previous Article
Mathematical analysis and numerical simulation of a model of morphogenesis
- MBE Home
- This Issue
-
Next Article
The Within-Host dynamics of malaria infection with immune response
Global asymptotic properties of staged models with multiple progression pathways for infectious diseases
1. | Department of Applied Mathematics and Computer Science, Samara Nayanova Academia, Molodogvardeyskaya 196, 443001, Samara, Russian Federation |
2. | MACSI, Department of Mathematics and Statistics, University of Limerick, Limerick |
References:
[1] |
R. M. Anderson, G. F. Medley, R. M. May and A. M. Johnson, A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS, IMA J. Math. Med. Biol., 3 (1986), 229-263. |
[2] |
R. M. Anderson and R. M. May, "Infectious Diseases in Humans: Dynamics and Control," Oxford University Press, Oxford, 1991. |
[3] |
E. A. Barbashin, "Introduction to the Theory of Stability," Wolters-Noordhoff, Groningen, 1970. |
[4] |
E. Beretta and V. Capasso, On the general structure of epidemic systems. Global asymptotic stability, Computers & Mathematics with Applications, 12-A (1986), 677-694. |
[5] |
E. Beretta and V. Capasso, Global stability results for a multigroup SIR epidemic model, in "Mathematical Ecology" (eds. T. G. Hallam, L. J. Gross and S. A. Levin), World Scientific Publ., Teaneck, NJ, (1988), 317-342. |
[6] |
O. Diekmann, J. A. P. Heesterbek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382. |
[7] |
Z. Feng and H. R. Thieme, Endemic model with arbitrarily distributed periods of infection I. Fundamental properties of the model, SIAM J. Appl. Math. 61 (2000), 803-833. |
[8] |
P. Georgescu and Y.-H. Hsieh, Global stability for a virus dynamics model with nonlinear incidence of infection and removal, SIAM J. Appl. Math., 67 (2006/07), 337-353. |
[9] |
B.-S. Goh, "Management and Analysis of Biological Populations," Elsevier Science, Amsterdam, 1980. |
[10] |
A. B. Gumel, C. C. McCluskey and P. van den Driessche, Mathematical study of a staged-progression HIV model with imperfect vaccine, Bull. Math. Biol., 68 (2006), 2105-2128. |
[11] |
H. Guo and M. Y. Li, Global dynamics of a staged progression model for infectious diseases, Math. Biosci. Eng., 3 (2006), 513-525. |
[12] |
H. Guo and M. Y. Li, Global dynamics of a staged-progression model with amelioration for infectious diseases, J. Biol. Dynamics, 2 (2008), 154-168. |
[13] |
H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653. |
[14] |
H. W. Hethcote, J. W. VanArk and I. M. Longini Jr., A simulation model of AIDS in San Francisco: I. Model formulation and parameter estimation, Math. Biosci., 106 (1991), 203-222. |
[15] |
G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72 (2010), 1192-1207. |
[16] |
J. M. Hyman, J. Li and E. A. Stanley, The differential infectivity and staged progression models for the transmission of HIV, Math. Biosci., 155 (1999), 77-109. |
[17] |
W. O. Kermack and A. G. McKendrick, A Contribution to the mathematical theory of epidemics, Proc. Roy. Soc. Lond. A, 115 (1927), 700-721. |
[18] |
A. Korobeinikov, Lyapunov functions and global properties for SEIR and SEIS epidemic models, Math. Med. Biol., 21 (2004), 75-83. |
[19] |
A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879-883. |
[20] |
A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission, Bull. Math. Biol., 68 (2006), 615-626. |
[21] |
A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., 69 (2007), 1871-1886. |
[22] |
A. Korobeinikov, Global asymptotic properties of virus dynamics models with dose dependent parasite reproduction and virulence, and nonlinear incidence rate, Math. Med. Biol., 26 (2009), 225-239. |
[23] |
A. Korobeinikov, Stability of ecosystem: Global properties of a general prey-predator model, Math. Med. Biol., 26 (2009), 309-321. |
[24] |
A. Korobeinikov, Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages, Bull. Math. Biol., 71 (2009), 75-83.
doi: 10.1007/s11538-007-9196-y. |
[25] |
J. P. LaSalle, "The Stability of Dynamical Systems," SIAM, Philadelphia, 1976. |
[26] |
X. Lin, H. W. Hethcote and P. van den Driessche, An epidemiological model for HIV/AIDS with proportional recruitment, Math. Biosci., 118 (1993), 181-195. |
[27] |
A. M. Lyapunov, "The General Problem of the Stability of Motion," Taylor & Francis, Ltd., London, 1992. |
[28] |
W. Ma, M. Song and Y. Takeuchi, Global stability for an SIR epidemic model with time delay, Appl. Math. Lett., 17 (2004), 1141-1145. |
[29] |
C. C. McCluskey, A model of HIV/AIDS with staged progression and amelioration, Math. Biosci., 181 (2003), 1-16. |
[30] |
C. C. McCluskey, Lyapunov functions for tuberculosis models with fast and slow progression, Math. Biosci. Eng., 3 (2006), 603-614. |
[31] |
C. C. McCluskey, Global stability for a class of mass action systems allowing for latency in tuberculosis, J. Math. Anal. Appl., 338 (2008), 518-535. |
[32] |
C. C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. Eng., 6 (2009), 603-610. |
[33] |
C. C. McCluskey, Complete global stability for an SIR epidemic model with delay - distributed or discrete, Nonlinear Anal. - Real, 11 (2010), 55-59. |
[34] |
C. C. McCluskey, P. Magal and G. F. Webb, Liapunov functional and global asymptotic stability for an infection-age model, Appl. Anal., 89 (2010), 1109-1140. |
[35] |
D. Morgan, C. Mahe, B. Mayanja, J. M. Okongo, R. Lubega and J. A. Whitworth, HIV-1 infection in rural Africa: Is there a difference in median time to AIDS and survival compared with that in industrialized countries, AIDS, 16 (2002), 597-632. |
[36] |
D. Okuonghae and A. Korobeinikov, Dynamics of tuberculosis: The effect of direct observation therapy strategy (DOTS) in Nigeria, Math. Model. Nat. Phenom., 2 (2006), 99-111. |
[37] |
G. Röst and J. Wu, SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. Eng., 5 (2008), 389-402. |
[38] |
Y. Takeuchi, "Global Dynamical Properties of Lotka-Volterra Systems," World Scientific, Singapore, 1996. |
[39] |
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. |
[40] |
J. Wang, G. Huang and Y. Takeuchi, Global asymptotic stability for HIV-1 dynamics with two infinite delays, Math. Med. Biol., 2011. (doi:10.1093/imammb/dqr009) |
show all references
References:
[1] |
R. M. Anderson, G. F. Medley, R. M. May and A. M. Johnson, A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS, IMA J. Math. Med. Biol., 3 (1986), 229-263. |
[2] |
R. M. Anderson and R. M. May, "Infectious Diseases in Humans: Dynamics and Control," Oxford University Press, Oxford, 1991. |
[3] |
E. A. Barbashin, "Introduction to the Theory of Stability," Wolters-Noordhoff, Groningen, 1970. |
[4] |
E. Beretta and V. Capasso, On the general structure of epidemic systems. Global asymptotic stability, Computers & Mathematics with Applications, 12-A (1986), 677-694. |
[5] |
E. Beretta and V. Capasso, Global stability results for a multigroup SIR epidemic model, in "Mathematical Ecology" (eds. T. G. Hallam, L. J. Gross and S. A. Levin), World Scientific Publ., Teaneck, NJ, (1988), 317-342. |
[6] |
O. Diekmann, J. A. P. Heesterbek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382. |
[7] |
Z. Feng and H. R. Thieme, Endemic model with arbitrarily distributed periods of infection I. Fundamental properties of the model, SIAM J. Appl. Math. 61 (2000), 803-833. |
[8] |
P. Georgescu and Y.-H. Hsieh, Global stability for a virus dynamics model with nonlinear incidence of infection and removal, SIAM J. Appl. Math., 67 (2006/07), 337-353. |
[9] |
B.-S. Goh, "Management and Analysis of Biological Populations," Elsevier Science, Amsterdam, 1980. |
[10] |
A. B. Gumel, C. C. McCluskey and P. van den Driessche, Mathematical study of a staged-progression HIV model with imperfect vaccine, Bull. Math. Biol., 68 (2006), 2105-2128. |
[11] |
H. Guo and M. Y. Li, Global dynamics of a staged progression model for infectious diseases, Math. Biosci. Eng., 3 (2006), 513-525. |
[12] |
H. Guo and M. Y. Li, Global dynamics of a staged-progression model with amelioration for infectious diseases, J. Biol. Dynamics, 2 (2008), 154-168. |
[13] |
H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653. |
[14] |
H. W. Hethcote, J. W. VanArk and I. M. Longini Jr., A simulation model of AIDS in San Francisco: I. Model formulation and parameter estimation, Math. Biosci., 106 (1991), 203-222. |
[15] |
G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72 (2010), 1192-1207. |
[16] |
J. M. Hyman, J. Li and E. A. Stanley, The differential infectivity and staged progression models for the transmission of HIV, Math. Biosci., 155 (1999), 77-109. |
[17] |
W. O. Kermack and A. G. McKendrick, A Contribution to the mathematical theory of epidemics, Proc. Roy. Soc. Lond. A, 115 (1927), 700-721. |
[18] |
A. Korobeinikov, Lyapunov functions and global properties for SEIR and SEIS epidemic models, Math. Med. Biol., 21 (2004), 75-83. |
[19] |
A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879-883. |
[20] |
A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission, Bull. Math. Biol., 68 (2006), 615-626. |
[21] |
A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., 69 (2007), 1871-1886. |
[22] |
A. Korobeinikov, Global asymptotic properties of virus dynamics models with dose dependent parasite reproduction and virulence, and nonlinear incidence rate, Math. Med. Biol., 26 (2009), 225-239. |
[23] |
A. Korobeinikov, Stability of ecosystem: Global properties of a general prey-predator model, Math. Med. Biol., 26 (2009), 309-321. |
[24] |
A. Korobeinikov, Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages, Bull. Math. Biol., 71 (2009), 75-83.
doi: 10.1007/s11538-007-9196-y. |
[25] |
J. P. LaSalle, "The Stability of Dynamical Systems," SIAM, Philadelphia, 1976. |
[26] |
X. Lin, H. W. Hethcote and P. van den Driessche, An epidemiological model for HIV/AIDS with proportional recruitment, Math. Biosci., 118 (1993), 181-195. |
[27] |
A. M. Lyapunov, "The General Problem of the Stability of Motion," Taylor & Francis, Ltd., London, 1992. |
[28] |
W. Ma, M. Song and Y. Takeuchi, Global stability for an SIR epidemic model with time delay, Appl. Math. Lett., 17 (2004), 1141-1145. |
[29] |
C. C. McCluskey, A model of HIV/AIDS with staged progression and amelioration, Math. Biosci., 181 (2003), 1-16. |
[30] |
C. C. McCluskey, Lyapunov functions for tuberculosis models with fast and slow progression, Math. Biosci. Eng., 3 (2006), 603-614. |
[31] |
C. C. McCluskey, Global stability for a class of mass action systems allowing for latency in tuberculosis, J. Math. Anal. Appl., 338 (2008), 518-535. |
[32] |
C. C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. Eng., 6 (2009), 603-610. |
[33] |
C. C. McCluskey, Complete global stability for an SIR epidemic model with delay - distributed or discrete, Nonlinear Anal. - Real, 11 (2010), 55-59. |
[34] |
C. C. McCluskey, P. Magal and G. F. Webb, Liapunov functional and global asymptotic stability for an infection-age model, Appl. Anal., 89 (2010), 1109-1140. |
[35] |
D. Morgan, C. Mahe, B. Mayanja, J. M. Okongo, R. Lubega and J. A. Whitworth, HIV-1 infection in rural Africa: Is there a difference in median time to AIDS and survival compared with that in industrialized countries, AIDS, 16 (2002), 597-632. |
[36] |
D. Okuonghae and A. Korobeinikov, Dynamics of tuberculosis: The effect of direct observation therapy strategy (DOTS) in Nigeria, Math. Model. Nat. Phenom., 2 (2006), 99-111. |
[37] |
G. Röst and J. Wu, SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. Eng., 5 (2008), 389-402. |
[38] |
Y. Takeuchi, "Global Dynamical Properties of Lotka-Volterra Systems," World Scientific, Singapore, 1996. |
[39] |
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. |
[40] |
J. Wang, G. Huang and Y. Takeuchi, Global asymptotic stability for HIV-1 dynamics with two infinite delays, Math. Med. Biol., 2011. (doi:10.1093/imammb/dqr009) |
[1] |
Hiroshi Ito. Input-to-state stability and Lyapunov functions with explicit domains for SIR model of infectious diseases. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5171-5196. doi: 10.3934/dcdsb.2020338 |
[2] |
Cruz Vargas-De-León, Alberto d'Onofrio. Global stability of infectious disease models with contact rate as a function of prevalence index. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1019-1033. doi: 10.3934/mbe.2017053 |
[3] |
C. Connell McCluskey. Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 381-400. doi: 10.3934/mbe.2015008 |
[4] |
Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971 |
[5] |
Peter Giesl. Construction of a global Lyapunov function using radial basis functions with a single operator. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 101-124. doi: 10.3934/dcdsb.2007.7.101 |
[6] |
Andrei Korobeinikov, Philip K. Maini. A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences & Engineering, 2004, 1 (1) : 57-60. doi: 10.3934/mbe.2004.1.57 |
[7] |
Connell McCluskey. Lyapunov functions for disease models with immigration of infected hosts. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4479-4491. doi: 10.3934/dcdsb.2020296 |
[8] |
Gang Huang, Edoardo Beretta, Yasuhiro Takeuchi. Global stability for epidemic model with constant latency and infectious periods. Mathematical Biosciences & Engineering, 2012, 9 (2) : 297-312. doi: 10.3934/mbe.2012.9.297 |
[9] |
Carlos Arnoldo Morales, M. J. Pacifico. Lyapunov stability of $\omega$-limit sets. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 671-674. doi: 10.3934/dcds.2002.8.671 |
[10] |
Luis Barreira, Claudia Valls. Stability of nonautonomous equations and Lyapunov functions. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2631-2650. doi: 10.3934/dcds.2013.33.2631 |
[11] |
Sergio Grillo, Jerrold E. Marsden, Sujit Nair. Lyapunov constraints and global asymptotic stabilization. Journal of Geometric Mechanics, 2011, 3 (2) : 145-196. doi: 10.3934/jgm.2011.3.145 |
[12] |
Huijuan Li, Junxia Wang. Input-to-state stability of continuous-time systems via finite-time Lyapunov functions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 841-857. doi: 10.3934/dcdsb.2019192 |
[13] |
Shangbing Ai. Global stability of equilibria in a tick-borne disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 567-572. doi: 10.3934/mbe.2007.4.567 |
[14] |
Guoshan Zhang, Peizhao Yu. Lyapunov method for stability of descriptor second-order and high-order systems. Journal of Industrial and Management Optimization, 2018, 14 (2) : 673-686. doi: 10.3934/jimo.2017068 |
[15] |
David J. Gerberry. An exact approach to calibrating infectious disease models to surveillance data: The case of HIV and HSV-2. Mathematical Biosciences & Engineering, 2018, 15 (1) : 153-179. doi: 10.3934/mbe.2018007 |
[16] |
Andrey V. Melnik, Andrei Korobeinikov. Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility. Mathematical Biosciences & Engineering, 2013, 10 (2) : 369-378. doi: 10.3934/mbe.2013.10.369 |
[17] |
W. E. Fitzgibbon, J. J. Morgan. Analysis of a reaction diffusion model for a reservoir supported spread of infectious disease. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6239-6259. doi: 10.3934/dcdsb.2019137 |
[18] |
Min Zhu, Xiaofei Guo, Zhigui Lin. The risk index for an SIR epidemic model and spatial spreading of the infectious disease. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1565-1583. doi: 10.3934/mbe.2017081 |
[19] |
Christopher M. Kellett. Classical converse theorems in Lyapunov's second method. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2333-2360. doi: 10.3934/dcdsb.2015.20.2333 |
[20] |
Lars Grüne, Peter E. Kloeden, Stefan Siegmund, Fabian R. Wirth. Lyapunov's second method for nonautonomous differential equations. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 375-403. doi: 10.3934/dcds.2007.18.375 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]