2011, 8(4): 1035-1059. doi: 10.3934/mbe.2011.8.1035

Mathematical analysis and numerical simulation of a model of morphogenesis

1. 

Departamento de Matemática Aplicada, ESCET, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain

2. 

Departamento de Matemática Aplicada, E.U. Informática. Universidad Politécnica de Madrid, Ctra. de Valencia, Km. 7. 28031 - Madrid, Spain

Received  November 2009 Revised  January 2011 Published  August 2011

We consider a simple mathematical model of distribution of morphogens (signaling molecules responsible for the differentiation of cells and the creation of tissue patterns). The mathematical model is a particular case of the model proposed by Lander, Nie and Wan in 2006 and similar to the model presented in Lander, Nie, Vargas and Wan 2005. The model consists of a system of three equations: a PDE of parabolic type with dynamical boundary conditions modelling the distribution of free morphogens and two ODEs describing the evolution of bound and free receptors. Three biological processes are taken into account: diffusion, degradation and reversible binding. We study the stationary solutions and the evolution problem. Numerical simulations show the behavior of the solution depending on the values of the parameters.
Citation: Ana I. Muñoz, José Ignacio Tello. Mathematical analysis and numerical simulation of a model of morphogenesis. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1035-1059. doi: 10.3934/mbe.2011.8.1035
References:
[1]

F. W. Cummings, A model of morphogenesis,, Phys. A, 3-4 (2004), 3.   Google Scholar

[2]

E. V. Entchev, A. Schwabedissen and M. González-Gaitán, Gradient formation of the TGF-beta homolog Dpp,, Cell, 103 (2000), 981.  doi: 10.1016/S0092-8674(00)00200-2.  Google Scholar

[3]

E. V. Entchev and M. González-Gaitán, Morphogen gradient formation and vesicular trafficking,, Traffic, 3 (2002), 98.   Google Scholar

[4]

A. Friedman, "Partial Differential Equations of Parabolic Type,", Prentice-Hall, (1964).   Google Scholar

[5]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Grundlehren der Mathematischen Wissenschaften, 224 (1977).   Google Scholar

[6]

B. Ka\'zmierczak and K. Piechór, Heteroclinic solutions for a model of skin morphogenesis. The case of strong attachment of the epidermis to the basal lamina,, Application of Mathematics in Biology and Medicine, (2004), 85.   Google Scholar

[7]

M. Kerszberg and L. Wolpert, Mechanism for positional signalling by morphogen transport: A theoretical study,, J. Theor. Biol., 191 (1998), 103.  doi: 10.1006/jtbi.1997.0575.  Google Scholar

[8]

P. Krzyzanowski, P. Laurencot and D. Wrzosek, Well-posedness and convergence to the steady state for a model of morphogen transport,, SIAM J. Math. Anal., 40 (2008), 1725.   Google Scholar

[9]

A. D. Lander, Q. Nie, B. Vargas and F. Y. M. Wan, Agregation of a distributed source morphogen gradient degradation,, Studies in Appl. Math., 114 (2005), 343.  doi: 10.1111/j.0022-2526.2005.01556.x.  Google Scholar

[10]

A. D. Lander, Q. Nie and F. Y. M. Wan, Do morphogen gradients arise by diffusion?,, Dev. Cell, 2 (2002), 785.  doi: 10.1016/S1534-5807(02)00179-X.  Google Scholar

[11]

A. D. Lander, Q. Nie and F. Y. M. Wan, Internalization and end flux in morphogen gradient degradation,, J. Comput. Appl. Math., 190 (2006), 232.  doi: 10.1016/j.cam.2004.11.054.  Google Scholar

[12]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,", Dunod, (1969).   Google Scholar

[13]

Y. Lou, Q. Nie and F.Y.M. Wan, Effects of sog Dpp-receptor binding,, SIAM J. Appl. Math., 65 (2005), 1748.  doi: 10.1137/S0036139903433219.  Google Scholar

[14]

J. H. Merking, D. J. Needham and B. D. Sleeman, A mathematical model for the spread of morphogens with density dependent chemosensitivity,, Nonlinearity, 18 (2005), 2745.  doi: 10.1088/0951-7715/18/6/018.  Google Scholar

[15]

J. H. Merking and B. D. Sleeman, On the spread of morphogens,, J. Math. Biol., 51 (2005), 1.  doi: 10.1007/s00285-004-0308-0.  Google Scholar

[16]

R. E. Showalter, "Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations,", Mathematical Surveys and Monographs, 49 (1997).   Google Scholar

[17]

A. Teleman and S. Cohen, Dpp gradient formation in the Drosophila wing imaginal disc,, Cell, 103 (2000), 971.  doi: 10.1016/S0092-8674(00)00199-9.  Google Scholar

[18]

J. I. Tello, Mathematical analysis of a model of Morphogenesis,, Discrete and Continuous Dynamical Systems - Series A, 25 (2009), 343.   Google Scholar

[19]

J. I. Tello, On the existence of solutions of a mathematical model of morphogens,, in, (2011), 495.   Google Scholar

[20]

L. Wolpert, Positional information and the spatial pattern of cellular differentiation,, J. Theore. Biol., 25 (1969), 1.  doi: 10.1016/S0022-5193(69)80016-0.  Google Scholar

show all references

References:
[1]

F. W. Cummings, A model of morphogenesis,, Phys. A, 3-4 (2004), 3.   Google Scholar

[2]

E. V. Entchev, A. Schwabedissen and M. González-Gaitán, Gradient formation of the TGF-beta homolog Dpp,, Cell, 103 (2000), 981.  doi: 10.1016/S0092-8674(00)00200-2.  Google Scholar

[3]

E. V. Entchev and M. González-Gaitán, Morphogen gradient formation and vesicular trafficking,, Traffic, 3 (2002), 98.   Google Scholar

[4]

A. Friedman, "Partial Differential Equations of Parabolic Type,", Prentice-Hall, (1964).   Google Scholar

[5]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Grundlehren der Mathematischen Wissenschaften, 224 (1977).   Google Scholar

[6]

B. Ka\'zmierczak and K. Piechór, Heteroclinic solutions for a model of skin morphogenesis. The case of strong attachment of the epidermis to the basal lamina,, Application of Mathematics in Biology and Medicine, (2004), 85.   Google Scholar

[7]

M. Kerszberg and L. Wolpert, Mechanism for positional signalling by morphogen transport: A theoretical study,, J. Theor. Biol., 191 (1998), 103.  doi: 10.1006/jtbi.1997.0575.  Google Scholar

[8]

P. Krzyzanowski, P. Laurencot and D. Wrzosek, Well-posedness and convergence to the steady state for a model of morphogen transport,, SIAM J. Math. Anal., 40 (2008), 1725.   Google Scholar

[9]

A. D. Lander, Q. Nie, B. Vargas and F. Y. M. Wan, Agregation of a distributed source morphogen gradient degradation,, Studies in Appl. Math., 114 (2005), 343.  doi: 10.1111/j.0022-2526.2005.01556.x.  Google Scholar

[10]

A. D. Lander, Q. Nie and F. Y. M. Wan, Do morphogen gradients arise by diffusion?,, Dev. Cell, 2 (2002), 785.  doi: 10.1016/S1534-5807(02)00179-X.  Google Scholar

[11]

A. D. Lander, Q. Nie and F. Y. M. Wan, Internalization and end flux in morphogen gradient degradation,, J. Comput. Appl. Math., 190 (2006), 232.  doi: 10.1016/j.cam.2004.11.054.  Google Scholar

[12]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,", Dunod, (1969).   Google Scholar

[13]

Y. Lou, Q. Nie and F.Y.M. Wan, Effects of sog Dpp-receptor binding,, SIAM J. Appl. Math., 65 (2005), 1748.  doi: 10.1137/S0036139903433219.  Google Scholar

[14]

J. H. Merking, D. J. Needham and B. D. Sleeman, A mathematical model for the spread of morphogens with density dependent chemosensitivity,, Nonlinearity, 18 (2005), 2745.  doi: 10.1088/0951-7715/18/6/018.  Google Scholar

[15]

J. H. Merking and B. D. Sleeman, On the spread of morphogens,, J. Math. Biol., 51 (2005), 1.  doi: 10.1007/s00285-004-0308-0.  Google Scholar

[16]

R. E. Showalter, "Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations,", Mathematical Surveys and Monographs, 49 (1997).   Google Scholar

[17]

A. Teleman and S. Cohen, Dpp gradient formation in the Drosophila wing imaginal disc,, Cell, 103 (2000), 971.  doi: 10.1016/S0092-8674(00)00199-9.  Google Scholar

[18]

J. I. Tello, Mathematical analysis of a model of Morphogenesis,, Discrete and Continuous Dynamical Systems - Series A, 25 (2009), 343.   Google Scholar

[19]

J. I. Tello, On the existence of solutions of a mathematical model of morphogens,, in, (2011), 495.   Google Scholar

[20]

L. Wolpert, Positional information and the spatial pattern of cellular differentiation,, J. Theore. Biol., 25 (1969), 1.  doi: 10.1016/S0022-5193(69)80016-0.  Google Scholar

[1]

Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051

[2]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[3]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[4]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[5]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[6]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[7]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

[8]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[9]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[10]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[11]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[12]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[13]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020403

[14]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[15]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[16]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[17]

Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021019

[18]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[19]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[20]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]