2011, 8(1): 113-122. doi: 10.3934/mbe.2011.8.113

Evaluation of vaccination strategies during pandemic outbreaks

1. 

Institute for Biodiagnostics, National Research Council Canada, 435 Ellice Avenue, Winnipeg, MB, R3B 1Y6, Canada

2. 

Department of Mathematics, University of Manitoba, Winnipeg, MB

3. 

Institute for Biodiagnostics, National Research Council Canada, Winnipeg, Manitoba, Canada, R3B 1Y6

Received  October 2009 Revised  August 2010 Published  January 2011

During pandemic influenza, several factors could significantly impact the outcome of vaccination campaigns, including the delay in pandemic vaccine availability, inadequate protective efficacy, and insufficient number of vaccines to cover the entire population. Here, we incorporate these factors into a vaccination model to investigate and compare the effectiveness of the single-dose and two-dose vaccine strategies. The results show that, if vaccination starts early enough after the onset of the outbreak, a two-dose strategy can lead to a greater reduction in the total number of infections. This, however, requires the second dose of vaccine to confer a substantially higher protection compared to that induced by the first dose. For a sufficiently long delay in start of vaccination, the single-dose strategy outperforms the two-dose vaccination program regardless of its protection efficacy. The findings suggest that the population-wide benefits of a single-dose strategy could in general be greater than the two-dose vaccination program, in particular when the second dose offers marginal increase in the protection induced by the first dose.
Citation: Christopher S. Bowman, Julien Arino, S.M. Moghadas. Evaluation of vaccination strategies during pandemic outbreaks. Mathematical Biosciences & Engineering, 2011, 8 (1) : 113-122. doi: 10.3934/mbe.2011.8.113
References:
[1]

J. Arino, C. S. Bowman and S. M. Moghadas, Antiviral resistance during pandemic influenza: implications for stockpiling and drug use,, BMC Infect Dis., (2009).  doi: 10.1186/1471-2334-9-8.  Google Scholar

[2]

S. Bansal, B. Pourbohloul and L. A. Meyers, A comparative analysis of influenza vaccination programs,, PLoS Med., 3 (2006).  doi: 10.1371/journal.pmed.0030387.  Google Scholar

[3]

C. B. Bridges, W. W. Thompson, M. I. Meltzer, G. R. Reeve, W. J. Talamonti, N. J. Cox, H. A. Lilac, H. Hall, A. Klimov and K. Fukuda, Effectiveness and cost-benefit of influenza vaccination of healthy working adults: A randomized controlled trial,, JAMA, 284 (2000), 1655.   Google Scholar

[4]

O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases,", Wiley 2000, (2000).   Google Scholar

[5]

J. Dushoff, J. B. Plotkin, C. Viboud, L. Simonsen, M. Miller, M. Loeb and D. J. D. Earn, Vaccinating to protect a vulnerable subpopulation,, PLoS Med., 4 (2007).  doi: 10.1371/journal.pmed.0040174.  Google Scholar

[6]

D. S. Fedson, Pandemic influenza and the global vaccine supply,, Clin. Infect. Dis., 16 (2003), 1552.  doi: 10.1086/375056.  Google Scholar

[7]

C. Fraser, C. A. Donnelly, S. Cauchemez, W. P. Hanage, M. D. Van Kerkhove, T. D. Hollingsworth, J. Griffin, R. F. Baggaley, H. E. Jenkins, E. J. Lyons, T. Jombart, W. R. Hinsley, N. C. Grassly, F. Balloux, A. C. Ghani, N. M. Ferguson, A. Rambaut, O. G. Pybus, H. Lopez-Gatell, C. M. Alpuche-Aranda, I. B. Chapela, E. P. Zavala, D. M. Guevara, F. Checchi, E. Garcia, S. Hugonnet, C. Roth and WHO, Science, 324 (2009), 1557.  doi: 10.1126/science.1176062.  Google Scholar

show all references

References:
[1]

J. Arino, C. S. Bowman and S. M. Moghadas, Antiviral resistance during pandemic influenza: implications for stockpiling and drug use,, BMC Infect Dis., (2009).  doi: 10.1186/1471-2334-9-8.  Google Scholar

[2]

S. Bansal, B. Pourbohloul and L. A. Meyers, A comparative analysis of influenza vaccination programs,, PLoS Med., 3 (2006).  doi: 10.1371/journal.pmed.0030387.  Google Scholar

[3]

C. B. Bridges, W. W. Thompson, M. I. Meltzer, G. R. Reeve, W. J. Talamonti, N. J. Cox, H. A. Lilac, H. Hall, A. Klimov and K. Fukuda, Effectiveness and cost-benefit of influenza vaccination of healthy working adults: A randomized controlled trial,, JAMA, 284 (2000), 1655.   Google Scholar

[4]

O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases,", Wiley 2000, (2000).   Google Scholar

[5]

J. Dushoff, J. B. Plotkin, C. Viboud, L. Simonsen, M. Miller, M. Loeb and D. J. D. Earn, Vaccinating to protect a vulnerable subpopulation,, PLoS Med., 4 (2007).  doi: 10.1371/journal.pmed.0040174.  Google Scholar

[6]

D. S. Fedson, Pandemic influenza and the global vaccine supply,, Clin. Infect. Dis., 16 (2003), 1552.  doi: 10.1086/375056.  Google Scholar

[7]

C. Fraser, C. A. Donnelly, S. Cauchemez, W. P. Hanage, M. D. Van Kerkhove, T. D. Hollingsworth, J. Griffin, R. F. Baggaley, H. E. Jenkins, E. J. Lyons, T. Jombart, W. R. Hinsley, N. C. Grassly, F. Balloux, A. C. Ghani, N. M. Ferguson, A. Rambaut, O. G. Pybus, H. Lopez-Gatell, C. M. Alpuche-Aranda, I. B. Chapela, E. P. Zavala, D. M. Guevara, F. Checchi, E. Garcia, S. Hugonnet, C. Roth and WHO, Science, 324 (2009), 1557.  doi: 10.1126/science.1176062.  Google Scholar

[1]

Diána H. Knipl, Gergely Röst. Modelling the strategies for age specific vaccination scheduling during influenza pandemic outbreaks. Mathematical Biosciences & Engineering, 2011, 8 (1) : 123-139. doi: 10.3934/mbe.2011.8.123

[2]

Eunha Shim. Prioritization of delayed vaccination for pandemic influenza. Mathematical Biosciences & Engineering, 2011, 8 (1) : 95-112. doi: 10.3934/mbe.2011.8.95

[3]

Francesco Salvarani, Gabriel Turinici. Optimal individual strategies for influenza vaccines with imperfect efficacy and durability of protection. Mathematical Biosciences & Engineering, 2018, 15 (3) : 629-652. doi: 10.3934/mbe.2018028

[4]

Majid Jaberi-Douraki, Seyed M. Moghadas. Optimal control of vaccination dynamics during an influenza epidemic. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1045-1063. doi: 10.3934/mbe.2014.11.1045

[5]

Sunmi Lee, Romarie Morales, Carlos Castillo-Chavez. A note on the use of influenza vaccination strategies when supply is limited. Mathematical Biosciences & Engineering, 2011, 8 (1) : 171-182. doi: 10.3934/mbe.2011.8.171

[6]

Eunha Shim. Optimal strategies of social distancing and vaccination against seasonal influenza. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1615-1634. doi: 10.3934/mbe.2013.10.1615

[7]

Olivia Prosper, Omar Saucedo, Doria Thompson, Griselle Torres-Garcia, Xiaohong Wang, Carlos Castillo-Chavez. Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza. Mathematical Biosciences & Engineering, 2011, 8 (1) : 141-170. doi: 10.3934/mbe.2011.8.141

[8]

Eunha Shim. A note on epidemic models with infective immigrants and vaccination. Mathematical Biosciences & Engineering, 2006, 3 (3) : 557-566. doi: 10.3934/mbe.2006.3.557

[9]

Folashade B. Agusto, Abba B. Gumel. Theoretical assessment of avian influenza vaccine. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 1-25. doi: 10.3934/dcdsb.2010.13.1

[10]

Holly Gaff, Elsa Schaefer. Optimal control applied to vaccination and treatment strategies for various epidemiological models. Mathematical Biosciences & Engineering, 2009, 6 (3) : 469-492. doi: 10.3934/mbe.2009.6.469

[11]

James M. Hyman, Jia Li. Differential susceptibility and infectivity epidemic models. Mathematical Biosciences & Engineering, 2006, 3 (1) : 89-100. doi: 10.3934/mbe.2006.3.89

[12]

Jianquan Li, Zhien Ma. Stability analysis for SIS epidemic models with vaccination and constant population size. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 635-642. doi: 10.3934/dcdsb.2004.4.635

[13]

Jing Hui, Lansun Chen. Impulsive vaccination of sir epidemic models with nonlinear incidence rates. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 595-605. doi: 10.3934/dcdsb.2004.4.595

[14]

Julien Arino, Chris Bauch, Fred Brauer, S. Michelle Driedger, Amy L. Greer, S.M. Moghadas, Nick J. Pizzi, Beate Sander, Ashleigh Tuite, P. van den Driessche, James Watmough, Jianhong Wu, Ping Yan. Pandemic influenza: Modelling and public health perspectives. Mathematical Biosciences & Engineering, 2011, 8 (1) : 1-20. doi: 10.3934/mbe.2011.8.1

[15]

James M. Hyman, Jia Li. Epidemic models with differential susceptibility and staged progression and their dynamics. Mathematical Biosciences & Engineering, 2009, 6 (2) : 321-332. doi: 10.3934/mbe.2009.6.321

[16]

Bruno Buonomo. A simple analysis of vaccination strategies for rubella. Mathematical Biosciences & Engineering, 2011, 8 (3) : 677-687. doi: 10.3934/mbe.2011.8.677

[17]

Rodolfo Acuňa-Soto, Luis Castaňeda-Davila, Gerardo Chowell. A perspective on the 2009 A/H1N1 influenza pandemic in Mexico. Mathematical Biosciences & Engineering, 2011, 8 (1) : 223-238. doi: 10.3934/mbe.2011.8.223

[18]

Qun Liu, Daqing Jiang, Ningzhong Shi, Tasawar Hayat, Ahmed Alsaedi. Stationarity and periodicity of positive solutions to stochastic SEIR epidemic models with distributed delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2479-2500. doi: 10.3934/dcdsb.2017127

[19]

Michael Dellnitz, Mirko Hessel-Von Molo, Adrian Ziessler. On the computation of attractors for delay differential equations. Journal of Computational Dynamics, 2016, 3 (1) : 93-112. doi: 10.3934/jcd.2016005

[20]

Hermann Brunner, Stefano Maset. Time transformations for delay differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 751-775. doi: 10.3934/dcds.2009.25.751

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

[Back to Top]