-
Previous Article
A note on the use of influenza vaccination strategies when supply is limited
- MBE Home
- This Issue
-
Next Article
Modelling the strategies for age specific vaccination scheduling during influenza pandemic outbreaks
Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza
1. | Department of Mathematics, University of Florida, Gainesville, FL 32611, United States |
2. | Department of Mathematics, Texas A&M University, College Station, TX 77843, United States |
3. | Department of Mathematics, Spelman College, Atlanta, GA 30314, United States |
4. | School of Human Evolution and Social Change, Mathematical, Computational and Modeling Science Center, Arizona State University, Tempe, AZ 85287, United States, United States |
5. | Mathematics, Computational and Modeling Sciences Center, Arizona State University, PO Box 871904, Tempe, AZ 85287 |
References:
[1] |
L. Altman, "Many Swine Flu Cases Have no Fever,", New York Times, (2009). Google Scholar |
[2] |
R. M. Anderson and R. M. May, "Infectious Diseases of Humans,", Oxford University Press, (1991). Google Scholar |
[3] |
I. G. Barr, J. McCauley, N. Cox, R. Daniels, O. G. Engelhardt, K. Fukuda, G. Grohmann, A. Hay, A. Kelso, A. Klimov, T. Odagiri, D. Smith, C. Russell, M. Tashiro, R. Webby, J. Wood, Z. Ye and W. Zhang, Epidemiological, antigenic and genetic characteristics of seasonal influenzaA(H1N1), A(H3N2) and B influenza viruses: Basis for the WHO recommendation on the composition of influenza vaccines for use in the 2009–2010 Northern Hemisphere season,, Vaccine, 28 (2010), 1156.
doi: 10.1016/j.vaccine.2009.11.043. |
[4] |
H. Behnke, Optimal control of deterministic epidemics,, Optimal Control Application Methods, 21 (2000), 269.
doi: 10.1002/oca.678. |
[5] |
W. I. B. Beveridge, "Influenza: The Last Great Plague. An Unfinished Story of Discovery,", Prodist, (1977). Google Scholar |
[6] |
F. Brauer, Z. Feng and C. Castillo-Chavez, Discrete epidemic models,, Mathematical Biosciences and Engineering, 7 (2010), 1.
doi: 10.3934/mbe.2010.7.1. |
[7] |
C. Castillo-Chavez, H. Hethcote, V. Andreason, S. A. Levin and W. M. Liu, Cross-immunity in the dynamics of homogeneous and heterogeneous populations,, Mathematical Ecology, (1988), 303. Google Scholar |
[8] |
Centers for Disease Control and Prevention (CDC), Key facts about seasonal influenza,, \url{http://www.cdc.gov/flu/keyfacts.htm}., (). Google Scholar |
[9] |
Centers for Disease Control and Prevention (CDC), Monitoring influenza activity, including 2009 H1N1,, (2009), (2009). Google Scholar |
[10] |
Centers for Disease Control and Prevention (CDC), Serum cross-reactive antibody response to a novel influenza A(H1N1) virus after vaccination with seasonal influenza vaccine,, MMWR Morb Mortal Wkly Rep, 58 (2009), 521. Google Scholar |
[11] |
G. Chowell, M. A. Miller and C. Viboud, Seasonal influenza in the United States, France, and Australia: Transmission an prospects for control,, Epidem. Infect., 136 (2008), 852.
doi: 10.1017/S0950268807009144. |
[12] |
G. Chowell, S. M. Bertozzi, M. A. Colchero, H. Lopez-Gatell, C. Alpuche-Aranda, M. Hernandez and M. A. Miller, Severe respiratory disease concurrent with the circulation of H1N1 influenza,, The New England Journal of Medicine, 361 (2009), 674.
doi: 10.1056/NEJMoa0904023. |
[13] |
Brian Coburn, "Multi-species Influenza Models with Recombination,", Ph.D thesis, (2009).
|
[14] |
R. Couch and J. Kasel, Immunity to influenza in man,, Annual Reviews in Microbiology, 37 (2002), 529.
doi: 10.1146/annurev.mi.37.100183.002525. |
[15] |
O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases. Model Building, Analysis and Interpretation,", John Wiley & Sons, (2000).
|
[16] |
D. J. D. Earn, J. Dushoff and S. A. Levin, Ecology and evolution of the flu,, Trends Ecol. Evol., 17 (2002), 334.
doi: 10.1016/S0169-5347(02)02502-8. |
[17] |
S. Echevarría-Zuno, J. M. Mejía-Aranguré, A. V. Mar-Obeso, C. Grajales-Muñiz, E. Robles-Pérez, M. González-León, M. C. Ortega-Alvarez, C. Gonzalez-Bonilla, R. A. Rascón-Pacheco and V. H. Borja-Aburto, Infection and death from influenza A H1N1 virus in Mexico: A retrospective analysis,, Lancet, 374 (2009), 2072.
doi: 10.1016/S0140-6736(09)61638-X. |
[18] |
A. Esteves-Jaramillo, S. B. Omer and E. Gonzalez-Diaz, Acceptance of a vaccine against novel influenza A (H1N1) virus among health care workers in two major cities in Mexico,, Archives of Medical Research, 40 (2009), 705.
doi: 10.1016/j.arcmed.2010.01.004. |
[19] |
W. H. Fleming and R. W. Rishel, "Deterministic and Stochasitic Optimal Control,", Springer-Verlag, (1994). Google Scholar |
[20] |
FLU. GOV, 2009 H1N1 vaccine doses allocated, ordered, and shipped by project area, (2010),, \url{http://www.flu.gov/individualfamily/vaccination/supply.html}., (). Google Scholar |
[21] |
M. A. Herrera-Valdez, M. Cruz-Aponte and C. Castillo-Chavez, Multiple waves for the same pandemic: Local transportation and social distancing explain the dynamics of the A/H1N1 epidemic during 2009 in Mexico,, (2010)., (2010). Google Scholar |
[22] |
E. Jung, S. Lenhart and Z. Feng, Optimal control of treatments in a two-strain tuberculosis model,, Discrete and Continuous Dynamical Systems-Series B, 2 (2002), 473.
doi: 10.3934/dcdsb.2002.2.473. |
[23] |
P. Y. Lee, D. B. Matchar, D. A. Clements, J. Huber, J. D. Hamilton and E. D. Peterson, Economic analysis of influenza vaccination and antiviral treatment for healthy working adults,, Ann. Intern. Med., 137 (2002), 225. Google Scholar |
[24] |
S. Lee, G. Chowell and C. Castillo-Chavez, Optimal control of influenza pandemics: the role of antiviral treatment and isolation,, Journal of Theoretical Biology, 265 (2010), 136.
doi: 10.1016/j.jtbi.2010.04.003. |
[25] |
S. Lenhart and J. T. Workman, "Optimal Control Applied to Biological Models,", Chapman & Hall/CRC Mathematical and Computational Biology Series, (2007). Google Scholar |
[26] |
E. Malkin, Flu? What flu?,, The New York Times, (). Google Scholar |
[27] |
H. Nishiura, C. Castillo-Chavez, M. Safan and G. Chowell, Transmission potential of the new Influenza A(H1N1) virus and its age-specificity in Japan,, Eurosurveillance, 14 (2009), 1. Google Scholar |
[28] |
M. Nuno, G. Chowell and A. B. Gumel, Assessing the role of basic control measures, antivirals and vaccine in curtailing pandemic influenza: Scenarios for the US, UK and the Netherlands,, Journal of The Royal Society Interface, 4 (2007), 505.
doi: 10.1098/rsif.2006.0186. |
[29] |
J. Plotkin, J. Dushoff and S. Levin, Hemagglutinin sequence clusters and the antigenic evolution of influenza A virus,, Proceedings of the National Academy of Sciences, 99 (2002), 6263.
doi: 10.1073/pnas.082110799. |
[30] |
L. S. Pontryagin, R. V. Boltyanski, R. V. Gamkrelidge and E. F. Mischenko, "The Mathematical Theory of Optimal Processes,", John Wiley and Sons, (1962).
|
[31] |
Prevent Influenza Now! Sponsored by the National Influenza Vaccine Summit, Influenza vaccine availability tracking system (IVATS),, \url{http://www.preventinfluenza.org/ivats/}., (). Google Scholar |
[32] |
C. E. Shoichet, Mexico still waiting for most swine flu vaccines,, (2010), (2010). Google Scholar |
[33] |
E. Spackman, D. Stallknecht, R. Slemons, K. Winker, D. L. Suarez, M. Scott and D. E. Swayne, Phylogenetic analyses of type A influenza genes in natural reservoir species in North America reveals genetic variation,, Virus research, 114 (2005), 89.
doi: 10.1016/j.virusres.2005.05.013. |
[34] |
R. Stengel, Optimal control and estimation,, http://www.princeton.edu/ stengel/MAE546.html., (). Google Scholar |
[35] |
T. Suess, U. Buchholz, S. Dupke, R. Grunow, M. an der Heiden, A. Heider, B. Biere, B. Schweiger, W. Haas and G. Krause, Shedding and transmission of novel influenza virus A/H1N1 infection in households—Germany, 2009,, American Journal of Epidemiology, 171 (2010), 1157.
doi: 10.1093/aje/kwq071. |
[36] |
J. K. Taubenberger, D. M. Morens, 1918 influenza: the mother of all pandemics,, Emerging Infectious Diseases, (2009), 05. Google Scholar |
[37] |
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Mathematical Biosciences, 180 (2002), 29.
doi: 10.1016/S0025-5564(02)00108-6. |
[38] |
World Health Organization, Recommended composition of influenza of influenza virus vaccines for use in the 2001-2002 season,, Wkly. Epidemiol. Rec., 76 (2001), 58. Google Scholar |
show all references
References:
[1] |
L. Altman, "Many Swine Flu Cases Have no Fever,", New York Times, (2009). Google Scholar |
[2] |
R. M. Anderson and R. M. May, "Infectious Diseases of Humans,", Oxford University Press, (1991). Google Scholar |
[3] |
I. G. Barr, J. McCauley, N. Cox, R. Daniels, O. G. Engelhardt, K. Fukuda, G. Grohmann, A. Hay, A. Kelso, A. Klimov, T. Odagiri, D. Smith, C. Russell, M. Tashiro, R. Webby, J. Wood, Z. Ye and W. Zhang, Epidemiological, antigenic and genetic characteristics of seasonal influenzaA(H1N1), A(H3N2) and B influenza viruses: Basis for the WHO recommendation on the composition of influenza vaccines for use in the 2009–2010 Northern Hemisphere season,, Vaccine, 28 (2010), 1156.
doi: 10.1016/j.vaccine.2009.11.043. |
[4] |
H. Behnke, Optimal control of deterministic epidemics,, Optimal Control Application Methods, 21 (2000), 269.
doi: 10.1002/oca.678. |
[5] |
W. I. B. Beveridge, "Influenza: The Last Great Plague. An Unfinished Story of Discovery,", Prodist, (1977). Google Scholar |
[6] |
F. Brauer, Z. Feng and C. Castillo-Chavez, Discrete epidemic models,, Mathematical Biosciences and Engineering, 7 (2010), 1.
doi: 10.3934/mbe.2010.7.1. |
[7] |
C. Castillo-Chavez, H. Hethcote, V. Andreason, S. A. Levin and W. M. Liu, Cross-immunity in the dynamics of homogeneous and heterogeneous populations,, Mathematical Ecology, (1988), 303. Google Scholar |
[8] |
Centers for Disease Control and Prevention (CDC), Key facts about seasonal influenza,, \url{http://www.cdc.gov/flu/keyfacts.htm}., (). Google Scholar |
[9] |
Centers for Disease Control and Prevention (CDC), Monitoring influenza activity, including 2009 H1N1,, (2009), (2009). Google Scholar |
[10] |
Centers for Disease Control and Prevention (CDC), Serum cross-reactive antibody response to a novel influenza A(H1N1) virus after vaccination with seasonal influenza vaccine,, MMWR Morb Mortal Wkly Rep, 58 (2009), 521. Google Scholar |
[11] |
G. Chowell, M. A. Miller and C. Viboud, Seasonal influenza in the United States, France, and Australia: Transmission an prospects for control,, Epidem. Infect., 136 (2008), 852.
doi: 10.1017/S0950268807009144. |
[12] |
G. Chowell, S. M. Bertozzi, M. A. Colchero, H. Lopez-Gatell, C. Alpuche-Aranda, M. Hernandez and M. A. Miller, Severe respiratory disease concurrent with the circulation of H1N1 influenza,, The New England Journal of Medicine, 361 (2009), 674.
doi: 10.1056/NEJMoa0904023. |
[13] |
Brian Coburn, "Multi-species Influenza Models with Recombination,", Ph.D thesis, (2009).
|
[14] |
R. Couch and J. Kasel, Immunity to influenza in man,, Annual Reviews in Microbiology, 37 (2002), 529.
doi: 10.1146/annurev.mi.37.100183.002525. |
[15] |
O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases. Model Building, Analysis and Interpretation,", John Wiley & Sons, (2000).
|
[16] |
D. J. D. Earn, J. Dushoff and S. A. Levin, Ecology and evolution of the flu,, Trends Ecol. Evol., 17 (2002), 334.
doi: 10.1016/S0169-5347(02)02502-8. |
[17] |
S. Echevarría-Zuno, J. M. Mejía-Aranguré, A. V. Mar-Obeso, C. Grajales-Muñiz, E. Robles-Pérez, M. González-León, M. C. Ortega-Alvarez, C. Gonzalez-Bonilla, R. A. Rascón-Pacheco and V. H. Borja-Aburto, Infection and death from influenza A H1N1 virus in Mexico: A retrospective analysis,, Lancet, 374 (2009), 2072.
doi: 10.1016/S0140-6736(09)61638-X. |
[18] |
A. Esteves-Jaramillo, S. B. Omer and E. Gonzalez-Diaz, Acceptance of a vaccine against novel influenza A (H1N1) virus among health care workers in two major cities in Mexico,, Archives of Medical Research, 40 (2009), 705.
doi: 10.1016/j.arcmed.2010.01.004. |
[19] |
W. H. Fleming and R. W. Rishel, "Deterministic and Stochasitic Optimal Control,", Springer-Verlag, (1994). Google Scholar |
[20] |
FLU. GOV, 2009 H1N1 vaccine doses allocated, ordered, and shipped by project area, (2010),, \url{http://www.flu.gov/individualfamily/vaccination/supply.html}., (). Google Scholar |
[21] |
M. A. Herrera-Valdez, M. Cruz-Aponte and C. Castillo-Chavez, Multiple waves for the same pandemic: Local transportation and social distancing explain the dynamics of the A/H1N1 epidemic during 2009 in Mexico,, (2010)., (2010). Google Scholar |
[22] |
E. Jung, S. Lenhart and Z. Feng, Optimal control of treatments in a two-strain tuberculosis model,, Discrete and Continuous Dynamical Systems-Series B, 2 (2002), 473.
doi: 10.3934/dcdsb.2002.2.473. |
[23] |
P. Y. Lee, D. B. Matchar, D. A. Clements, J. Huber, J. D. Hamilton and E. D. Peterson, Economic analysis of influenza vaccination and antiviral treatment for healthy working adults,, Ann. Intern. Med., 137 (2002), 225. Google Scholar |
[24] |
S. Lee, G. Chowell and C. Castillo-Chavez, Optimal control of influenza pandemics: the role of antiviral treatment and isolation,, Journal of Theoretical Biology, 265 (2010), 136.
doi: 10.1016/j.jtbi.2010.04.003. |
[25] |
S. Lenhart and J. T. Workman, "Optimal Control Applied to Biological Models,", Chapman & Hall/CRC Mathematical and Computational Biology Series, (2007). Google Scholar |
[26] |
E. Malkin, Flu? What flu?,, The New York Times, (). Google Scholar |
[27] |
H. Nishiura, C. Castillo-Chavez, M. Safan and G. Chowell, Transmission potential of the new Influenza A(H1N1) virus and its age-specificity in Japan,, Eurosurveillance, 14 (2009), 1. Google Scholar |
[28] |
M. Nuno, G. Chowell and A. B. Gumel, Assessing the role of basic control measures, antivirals and vaccine in curtailing pandemic influenza: Scenarios for the US, UK and the Netherlands,, Journal of The Royal Society Interface, 4 (2007), 505.
doi: 10.1098/rsif.2006.0186. |
[29] |
J. Plotkin, J. Dushoff and S. Levin, Hemagglutinin sequence clusters and the antigenic evolution of influenza A virus,, Proceedings of the National Academy of Sciences, 99 (2002), 6263.
doi: 10.1073/pnas.082110799. |
[30] |
L. S. Pontryagin, R. V. Boltyanski, R. V. Gamkrelidge and E. F. Mischenko, "The Mathematical Theory of Optimal Processes,", John Wiley and Sons, (1962).
|
[31] |
Prevent Influenza Now! Sponsored by the National Influenza Vaccine Summit, Influenza vaccine availability tracking system (IVATS),, \url{http://www.preventinfluenza.org/ivats/}., (). Google Scholar |
[32] |
C. E. Shoichet, Mexico still waiting for most swine flu vaccines,, (2010), (2010). Google Scholar |
[33] |
E. Spackman, D. Stallknecht, R. Slemons, K. Winker, D. L. Suarez, M. Scott and D. E. Swayne, Phylogenetic analyses of type A influenza genes in natural reservoir species in North America reveals genetic variation,, Virus research, 114 (2005), 89.
doi: 10.1016/j.virusres.2005.05.013. |
[34] |
R. Stengel, Optimal control and estimation,, http://www.princeton.edu/ stengel/MAE546.html., (). Google Scholar |
[35] |
T. Suess, U. Buchholz, S. Dupke, R. Grunow, M. an der Heiden, A. Heider, B. Biere, B. Schweiger, W. Haas and G. Krause, Shedding and transmission of novel influenza virus A/H1N1 infection in households—Germany, 2009,, American Journal of Epidemiology, 171 (2010), 1157.
doi: 10.1093/aje/kwq071. |
[36] |
J. K. Taubenberger, D. M. Morens, 1918 influenza: the mother of all pandemics,, Emerging Infectious Diseases, (2009), 05. Google Scholar |
[37] |
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Mathematical Biosciences, 180 (2002), 29.
doi: 10.1016/S0025-5564(02)00108-6. |
[38] |
World Health Organization, Recommended composition of influenza of influenza virus vaccines for use in the 2001-2002 season,, Wkly. Epidemiol. Rec., 76 (2001), 58. Google Scholar |
[1] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[2] |
Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020288 |
[3] |
Lin Niu, Yi Wang, Xizhuang Xie. Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021014 |
[4] |
Yancong Xu, Lijun Wei, Xiaoyu Jiang, Zirui Zhu. Complex dynamics of a SIRS epidemic model with the influence of hospital bed number. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021016 |
[5] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020451 |
[6] |
Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054 |
[7] |
Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304 |
[8] |
Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021011 |
[9] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[10] |
Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020458 |
[11] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[12] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[13] |
Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051 |
[14] |
Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021011 |
[15] |
Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127 |
[16] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284 |
[17] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[18] |
Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020 |
[19] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065 |
[20] |
Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020046 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]