\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A note on the use of optimal control on a discrete time model of influenza dynamics

Abstract / Introduction Related Papers Cited by
  • A discrete time Susceptible - Asymptomatic - Infectious - Treated - Recovered (SAITR) model is introduced in the context of influenza transmission. We evaluate the potential effect of control measures such as social distancing and antiviral treatment on the dynamics of a single outbreak. Optimal control theory is applied to identify the best way of reducing morbidity and mortality at a minimal cost. The problem is solved by using a discrete version of Pontryagin's maximum principle. Numerical results show that dual strategies have stronger impact in the reduction of the final epidemic size.
    Mathematics Subject Classification: Primary: 92B05, 49K21, 93C55; Secondary: 92D40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. J. Allen and A. M. Burgin, Comparison of deterministic and stochastic SIS and SIR models in discrete time, Math. Biosci., 163 (2000), 1-33.doi: 10.1016/S0025-5564(99)00047-4.

    [2]

    R. M. Anderson and R. M. May, "Infectious Diseases of Humans: Dynamics and Control," Oxford University Press, Oxford, UK, 1992.

    [3]

    J. Arino, F. Brauer, P. van den Driessche, J. Watmough and J. Wu, A model for influenza with vaccination and antiviral treatment, J. Theor. Biol., 253 (2003), 118-130.doi: 10.1016/j.jtbi.2008.02.026.

    [4]

    H. Behncke, Optimal control of deterministic epidemics, Opt. Control Appl. Meth., 21 (2000), 269-285.doi: 10.1002/oca.678.

    [5]

    F. Brauer and C. Castillo-Chavez, "Mathematical Models in Population Biology and Epidemiology," Springer-Verlag, 2001.

    [6]

    F. Brauer, Z. Feng, and C. Castillo-Chavez, Discrete epidemic models, Math. Biosc. $&$ Eng., 7 (2010), 1-15.

    [7]

    P. BrewerEconomic effects of pandemic flu in a recession, 2009, http://www.wisebread.com/economic-effects-of-pandemic-flu-in-a-recession.

    [8]

    C. A. Burdet and S. P. Sethi, On the maximum principle for a class of discrete dynamical systems with Lags, Journal of Optimization Theory and Applications, 19 (1976), 445-454.doi: 10.1007/BF00941486.

    [9]

    C. Castillo-Chavez and A-A. Yakubu, Discrete-time S-I-S models with complex dynamics, Nonlinear Analysis, 47 (2001), 4753-4762.doi: 10.1016/S0362-546X(01)00587-9.

    [10]

    C. Castillo-Chavez and A-A. Yakubu, Discrete-time S-I-S models with simple and complex population dynamics, in Mathematical Approaches for Emerging and Reemerging Infectious Diseases (eds., C. Castillo-Chavez, et al.), Springer-Verlag, IMA, 125 (2001), 153-163.

    [11]

    M. ChanWorld now at the start of 2009 influenza pandemic, 11 Jun. 2009. http://who.int/mediacentre/news/statements/2009/h1n1_pandemic_phase6_20090611/en/index.html

    [12]

    G. Chowell, C. E. Ammon, N. W. Hengartner and J. M. Hyman, Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: Assessing the effects of hypothetical interventions, J. Theor. Biol., 241 (2006), 193-204.doi: 10.1016/j.jtbi.2005.11.026.

    [13]

    G. Chowell, H. Nishiura and L. M. A. Bettencourt, Comparative estimation of the reproduction number for pandemic influenza from daily case notification data, J. Roy. Soc. Interface, 4 (2007), 55-66.doi: 10.1098/rsif.2006.0161.

    [14]

    W. Ding, L. Gross, K. Langston, S. Lenhart and L. Real, Rabies in racoons: Optimal control for a discrete time model on a spatial grid, J. Biol. Dynamics, 1 (2007), 307-393.doi: 10.1080/17513750701605515.

    [15]

    R. Durrett and S. A. Levin, The importance of being discrete (and spatial), Theoret. Popul. Biol., 46 (1994), 363394.doi: 10.1006/tpbi.1994.1032.

    [16]

    N. M. Ferguson, D. A. T. Cumminangs, C. Fraser, J. C. Cajika, P. C. Cooley and D. S. Burke, Strategies for mitigating an influenza pandemic, Nature, 442 (2006), 448-452.doi: 10.1038/nature04795.

    [17]

    H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev, 42 (2000), 599-653.doi: 10.1137/S0036144500371907.

    [18]

    R. Hilschera and V. Zeidanb, Discrete optimal control: The accessory problem and necessary optimality conditions, Journal of Mathematical Analysis and Applications, 243 (2000), 429-452.doi: 10.1006/jmaa.1999.6679.

    [19]

    C. Hwang and L. Fan, A Discrete version of Pontryagin's maximum principle, Operations Research, 15 (1967), 139-146.doi: 10.1287/opre.15.1.139.

    [20]

    E. Jung, S. Lenhart, V. Protopopescu and C. F. Babbs, Optimal control theory applied to a difference equation model for cardiopulmonary resuscitation, Mathematical Models and methods in Applied Sciences, 15 (2005), 1519-1531.doi: 10.1142/S0218202505000856.

    [21]

    M. I. Kamien and N. L. Schwarz, "Dynamic Optimization. The Calculus of Variations and Optimal Control in Economics And Management," Amsterdam: North-Holland, 1991.

    [22]

    S. Lee, G. Chowell and C. Castillo-Chavez, Optimal control for pandemic influenza: The role of limited antiviral treatment and isolation, J. Theor. Biol., 265 (2010), 136-150.doi: 10.1016/j.jtbi.2010.04.003.

    [23]

    S. Lenhart and J. Workman, "Optimal Control Applied to Biological Models," Chapman & Hall, CRC Mathematical and Computational Biology series, 2007.

    [24]

    B. Marinkovic, Optimality conditions for discrete optimal control problems, Optimization Methods & Software Archive, 22 (2007), 959-969.

    [25]

    C. E. Mills, J. M. Robins and M. Lipsitch, Transmissibility of 1918 pandemic influenza, Nature, 432 (2004), 904-906.doi: 10.1038/nature03063.

    [26]

    J. C. Monterrubio, Short-term economic impacts of influenza A(H1N1) and government reaction on the Mexican tourism industry: an analysis of the media, International Journal of Tourism Policy, 3 (2010), 1-15.doi: 10.1504/IJTP.2010.031599.

    [27]

    J. Nocedal, "Numerical Optimization," Springer, 2006.

    [28]

    M. Nuno, G. Chowell, X. Wang and C. Castillo-Chavez, On the role of cross-immunity and vaccines on the survival of less fit flu-strains, Theor. Pop. Biol., Elsevier, 71 (2007), 20-29.

    [29]

    L. S. Pontryagin, V. Boltyanskii, R. Gamkrelidze and E. Mishchenko, "The Mathematical Theory of Optimal Processes," Wiley, New Jersey, 1962.

    [30]

    Z. Qiu and Z. Feng, Transmission dynamics of an influenza model with vaccination and antiviral treatment, Bull. Math. Biol., 72 (2009), 1-33.doi: 10.1007/s11538-009-9435-5.

    [31]

    S. P. Sethi and G. L. Thompson, "Optimal Control Theory: Applications to Management Science and Economics," Second Edition, Springer, 2000.

    [32]

    J. M. Tchuenche, S. A. Kamis, F. B. Agusto and S. C. Mpesche, "Optimal Control and Sensitivity Analysis of an Influenza Model with Treatment and Vaccination," Acta Biotheoretica, Springer, 2010.

    [33]

    S. M. Tracht, S. Del Valle and J. Hyman, Mathematical modeling of the effectiveness of facemasks in reducing the spread of novel influenza A (H1N1) PLoS ONE, www.plosone.org, 5 (2010).doi: 10.1371/journal.pone.0009018.

    [34]

    Y. Zhou, Z. Ma and F. Brauer, A discrete epidemic model for SARS transmission and control in China, Math. and Computer Modelling, 40 (2004), 1491-1506.doi: 10.1016/j.mcm.2005.01.007.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(169) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return