2011, 8(1): 21-48. doi: 10.3934/mbe.2011.8.21

Multiple outbreaks for the same pandemic: Local transportation and social distancing explain the different "waves" of A-H1N1pdm cases observed in México during 2009

1. 

Mathematical, Computational, and Modeling Sciences Center, Physical Sciences A, P.O. Box, 871904, Tempe, AZ 85287-1904, United States, United States

Received  June 2010 Revised  September 2010 Published  January 2011

Influenza outbreaks have been of relatively limited historical interest in México. The 2009 influenza pandemic not only changed México's health priorities but also brought to the forefront some of the strengths and weaknesses of México's epidemiological surveillance and public health system. A year later, México's data show an epidemic pattern characterized by three "waves''. The reasons this three-wave patterns are theoretically investigated via models that incorporate México's general trends of land transportation, public health measures, and the regular opening and closing of schools during 2009. The role of vaccination is also studied taking into account delays in access and limitations in the total and daily numbers of vaccines available. The research in this article supports the view that the thee epidemic "waves" are the result of the synergistic interactions of three factors: regional movement patterns of Mexicans, the impact and effectiveness of dramatic social distancing measures imposed during the first outbreak, and the summer release of school children followed by their subsequent return to classes in the fall. The three "waves" cannot be explained by the transportation patterns alone but only through the combination of transport patterns and changes in contact rates due to the use of explicit or scheduled social distancing measures. The research identifies possible vaccination schemes that account for the school calendar and whose effectiveness are enhanced by social distancing measures. The limited impact of the late arrival of the vaccine is also analyzed.
Citation: Marco Arieli Herrera-Valdez, Maytee Cruz-Aponte, Carlos Castillo-Chavez. Multiple outbreaks for the same pandemic: Local transportation and social distancing explain the different "waves" of A-H1N1pdm cases observed in México during 2009. Mathematical Biosciences & Engineering, 2011, 8 (1) : 21-48. doi: 10.3934/mbe.2011.8.21
References:
[1]

R. Acuña-Soto, "Historical and Epidemiological Patterns of Influenza in México,", In, (2009). Google Scholar

[2]

R. Acuna-Soto, Death records from historical archives: A valuable source of epidemiological information,, Mathematical and Statistical Estimation Approaches in Epidemiology, (2009), 189. Google Scholar

[3]

F. S. Albright, P. Orlando, A. T. Pavia, G. G. Jackson and L. A. C. Albright, Evidence for a heritable predisposition to death due to influenza,, The Journal of Infectious Diseases, 197 (2008), 18. doi: 10.1086/524064. Google Scholar

[4]

L. K. Altman, "Many Swine Flu Cases Have no Fever,", New York Times, (2009). Google Scholar

[5]

V. Andreasen, J. Lin and S. A. Levin, The dynamics of co-circulating influenza strains conferring partial cross-immunity,, Journal of Mathematical Biology, 35 (1997), 825. Google Scholar

[6]

L. A. Angelova, Long-term immunity to influenza A (H1N1) in humans,, In Annales de l'Institut Pasteur. Virologie, 133 (1982), 267. Google Scholar

[7]

J. Arino and P. van den Driessche, A multi-city epidemic model,, Mathematical Population Studies, 10 (2003), 175. doi: 10.1080/08898480306720. Google Scholar

[8]

J. Arino, F. Brauer, P. van den Driessche, J. Watmough and J. Wu, A model for influenza with vaccination and antiviral treatment,, Journal of Theoretical Biology, 253 (2008), 118. doi: 10.1016/j.jtbi.2008.02.026. Google Scholar

[9]

O. V. Baroyan and L. A. Rvachev, Deterministic models of epidemics for a territory with a transport network,, Cybernetics and Systems Analysis, 3 (1967), 55. doi: 10.1007/BF01120008. Google Scholar

[10]

S. Bertozzi, A. Kelso, M. Tashiro, V. Savy, J. Farrar, M. Osterholm, S. Jameel and C. P. Muller, Pandemic flu: From the front lines. Interviewed by Declan Butler,, Nature, 461 (2009). Google Scholar

[11]

F. Brauer, Compartmental models in epidemiology,, Mathematical Epidemiology, (2008), 19. Google Scholar

[12]

F. Brauer and C. Castillo-Chavez, "Mathematical Models in Population Biology and Epidemiology,", Springer Verlag, (2001). Google Scholar

[13]

F. Brauer and C. Kribs-Zaleta, "An Introduction to Dynamical Systems for Biological Modeling" (series: chapman & hall/crc mathematical & computational biology),, 2010., (). Google Scholar

[14]

R. M. Bush, C. A. Bender, K. Subbarao, N. J. Cox and W. M. Fitch, Predicting the evolution of human influenza A,, Science, 286 (1999). doi: 10.1126/science.286.5446.1921. Google Scholar

[15]

P. Caley, D. J. Philp and K. McCracken, Quantifying social distancing arising from pandemic influenza,, Journal of The Royal Society Interface, 5 (2008). doi: 10.1098/rsif.2007.1197. Google Scholar

[16]

C. Castillo-Chavez, H. W. Hethcote, V. Andreasen, S. A. Levin and W. Liu, "Cross-Immunity in the Dynamics of Homogeneous and Heterogeneous Populations,", Mathematical Ecology, (1988). Google Scholar

[17]

C. Castillo-Chavez, H. W. Hethcote, V. Andreasen, S. A. Levin and W. M. Liu, Epidemiological models with age structure, proportionate mixing, and cross-immunity,, Journal of Mathematical Biology, 27 (1989), 233. Google Scholar

[18]

C. Castillo-Chavez, B. Song and J. Zhang, An epidemic model with virtual mass transportation: the case of smallpox in a large city,, Bioterrorism: Mathematical Modeling Applications in Homeland Security, (2003). Google Scholar

[19]

M. Chan, "Influenza A(H1N1),", Technical report, (2009). Google Scholar

[20]

G. Chowell, S. M. Bertozzi, M. A. Colchero, H. Lopez-Gatell, C. Alpuche-Aranda, M. Hernandez and M. A. Miller, Severe respiratory disease concurrent with the circulation of H1N1 influenza,, The New England Journal of Medicine, 361 (2009). doi: 10.1056/NEJMoa0904023. Google Scholar

[21]

G. Chowell, C. Viboud, X. Wang, S. M. Bertozzi and M. A. Miller, Adaptive vaccination strategies to mitigate pandemic influenza: Mexico as a case study,, 2009., (). Google Scholar

[22]

G. Chowell, C. Viboud, L. Simonsen, M. A. Miller and R. Acuna-Soto, Mortality patterns associated with the 1918 influenza pandemic in Mexico: Evidence for a spring herald wave and lack of preexistingiImmunity in older populations,, The Journal of Infectious Diseases, (2010). Google Scholar

[23]

V. Colizza, A. Barrat, M. Barthelemy, A. Valleron and A. Vespignani, Modeling the worldwide spread of pandemic influenza: Baseline case and containment interventions,, PLoS Medicine, 4 (2007). doi: 10.1371/journal.pmed.0040013. Google Scholar

[24]

J. A. Córdova-Villalobos, Lessons learned and preparing for the future: Influenza a/h1n1 in méxico,, Plenary 1, (2009). Google Scholar

[25]

R. B. Couch and J. A. Kasel, Immunity to influenza in man,, Annual Reviews in Microbiology, 37 (1983), 529. doi: 10.1146/annurev.mi.37.100183.002525. Google Scholar

[26]

G. Del Giudice, K. J. Stittelaar, G. van Amerongen, J. Simon, A. D. M. E. Osterhaus, K. Stöhr and R. Rappuoli, Seasonal influenza vaccine provides priming for A/H1N1 immunization,, Science Translational Medicine, 1 (2009). Google Scholar

[27]

Instituto Mexicano del Transporte, North american transportation statistics database, 2006-., URL , (). Google Scholar

[28]

M. Falco, Cdc: Production of h1n1 flu lagging, 2009., URL , (). Google Scholar

[29]

Z. Feng, W. Huang and C. Castillo-Chavez, On the role of variable latent periods in mathematical models for tuberculosis,, Journal of Dynamics and Differential Equations, 13 (2001), 425. Google Scholar

[30]

A. Flahault, X. De Lamballerie and T. Hanslik, Symptomatic infections less frequent with H1N1pdm than with seasonal strains,, 2009., (). Google Scholar

[31]

T. Garske, J. Legrand, C. A. Donnelly, H. Ward, S. Cauchemez, C. Fraser, N. M. Ferguson and A. C. Ghani, Assessing the severity of the novel influenza A/H1N1 pandemic,, British Medical Journal, 339 (2009). Google Scholar

[32]

Mexico City guide, "Transport," 2010., URL , (). Google Scholar

[33]

M. Haber, I. R. A. M. Longini JR and M. E. Halloran, Measures of the effects of vaccination in a randomly mixing population,, International Journal of Epidemiology, 20 (1991). doi: 10.1093/ije/20.1.300. Google Scholar

[34]

K. Hadeler and C. Castillo-Chavez, A core group model for disease transmission,, Mathematical Biosciences, 128 (1995), 41. doi: 10.1016/0025-5564(94)00066-9. Google Scholar

[35]

M. E. Halloran, M. Haber, I. M. Longini Jr and C. J. Struchiner, Direct and indirect effects in vaccine efficacy and effectiveness,, American Journal of Epidemiology, 133 (1991). Google Scholar

[36]

W. Huang, K. L. Cooke and C. Castillo-Chavez, Stability and bifurcation for a multiple-group model for the dynamics of HIV/AIDS transmission,, SIAM Journal on Applied Mathematics, (1992), 835. Google Scholar

[37]

J. Hunter, D. Dale and M. Droettboom, "Matplotlib: A Python 2d Plotting Library," 2008-., URL , (). Google Scholar

[38]

A. C. Hurt, J. Ernest, Y. M. Deng, P. Iannello, T. G. Besselaar, C. Birch, P. Buchy, M. Chittaganpitch, S. C. Chiu, D. Dwyer, et al., "Emergence and spread of oseltamivir-resistant A (H1N1) influenza viruses in Oceania, South East Asia and South Africa,", Antiviral Research, (2009). Google Scholar

[39]

E. S. Hurwitz, M. Haber, A. Chang, T. Shope, S. Teo, M. Ginsberg, N. Waecker and N. J. Cox, Effectiveness of influenza vaccination of day care children in reducing influenza-related morbidity among household contacts,, The Journal of the American Medical Association, 284 (2000). Google Scholar

[40]

J. M. Hyman and T. Laforce, Modeling the spread of in fluecnza among cities,, Biomathematical Modeling Applications for Homeland Security, (2003), 215. Google Scholar

[41]

E. Jones, T. Oliphant, P. Peterson, et al., "SciPy: Open Source Scientific Tools for Python," 2001-., URL , (). Google Scholar

[42]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics-I,, Proceedings of the Royal Society, 115A (1927), 700. Google Scholar

[43]

K. Khan, J. Arino, W. Hu, P. Raposo, J. Sears, F. Calderon, C. Heidebrecht, M. Macdonald, J. Liauw, A. Chan, et al., Spread of a novel influenza A (H1N1) virus via global airline transportation,, The New England Journal of Medicine, 361 (2009). doi: 10.1056/NEJMc0904559. Google Scholar

[44]

C. D. Kozul, K. H. Ely, R. I. Enelow and J. W. Hamilton, Low-dose arsenic compromises the immune response to influenza a infection in vivo,, Environ Health Perspect. PubMed, 117 (2009), 1441. Google Scholar

[45]

R. J. Kurukulaaratchy, S. Matthews and S. H. Arshad, Does environment mediate earlier onset of the persistent childhood asthma phenotype?,, Pediatrics, 113 (2004). doi: 10.1542/peds.113.2.345. Google Scholar

[46]

P. R. S. Lagacé-Wiens, E. Rubinstein and A. Gumel, "Influenza Epidemiology: Past, Present, and Future,", Critical Care Medicine, (2010). Google Scholar

[47]

M. A. Lezana-Fernández, "A/h1n1 Epidemic in México: Lessons Learned,", Talk at, (2009). Google Scholar

[48]

F. Libenson, "Llegaron al Edomex 66 mil Vacunas Contra AH1N1," 2009., http://elinformantemexico.com/index.php/noticias/llegaron-al-edomex-66-mil-v acunas-contra-ah1n1-franklin-libenson-violante.html., (). Google Scholar

[49]

H. C. Lin, M. J. Chen, S. J. Chang, M. T. Liu, H. S. Wu, J. H. Chuang, J. H. Chou, H. S. Kuo and S. C. Chang, Investigation of the first two cases of oseltamivir-resistant pandemic (H1N1) 2009 virus in Taiwan,, Taiwan Epidemiology Bulletin, (2009), 815. Google Scholar

[50]

M. López-Cervantes, A. Venado, A. Moreno, R. L. Pacheco-Domínguez and G. Ortega-Pierres, On the spread of the novel influenza A (H1N1) virus in Mexico,, The Journal of Infection in Developing Countries, 3 (2009). Google Scholar

[51]

Mexicocity.com.mx, "Taxi Cabs," 2010., URL , (). Google Scholar

[52]

M. A. Miller, C. Viboud, M. Balinska and L. Simonsen, The signature features of influenza pandemics-implications for policy,, The New England Journal of Medicine, 360 (2009). Google Scholar

[53]

A. S. Monto, Interrupting the transmission of respiratory tract infections: Theory and practice,, Clinical Infectious Diseases, 28 (1999), 200. Google Scholar

[54]

A. Moscona, Global transmission of oseltamivir-resistant influenza,, The New England Journal of Medicine, (2009). Google Scholar

[55]

M. R. Moser, T. R. Bender, H. S. Margolis, G. R. Noble, A. P. Kendal and D. G. Ritter, An outbreak of influenza aboard a commercial airliner,, American Journal of Epidemiology, 110 (1979). Google Scholar

[56]

M. I. Nelson and E. C. Holmes, The evolution of epidemic influenza,, Nature Reviews Genetics, 8 (2007), 196. Google Scholar

[57]

H. Nishiura, C. Castillo-Chavez, M. Safan and G. Chowell, Transmission potential of the new influenza A (H1N1) virus and its age-specificity in Japan,, Euro Surveill, 14 (2009). Google Scholar

[58]

SSA Notimex, "Este Lunes Llegan las Vacunas Contra Influenza AH1N1,", Notimex, (2009). Google Scholar

[59]

M. Nuno, G. Chowell and A. B. Gumel, Assessing the role of basic control measures, antivirals and vaccine in curtailing pandemic influenza: Scenarios for the US, UK and the Netherlands,, Journal of the Royal Society Interface, 4 (2007). doi: 10.1098/rsif.2006.0186. Google Scholar

[60]

M. Nuno, G. Chowell, X. Wang and C. Castillo-Chavez, On the role of cross-immunity and vaccines on the survival of less fit flu-strains,, Theoretical Population Biology, 71 (2007), 20. doi: 10.1016/j.tpb.2006.07.002. Google Scholar

[61]

A. Pedroza, J. G. Huerta, M. de la Luz Garcia, A. Rojas, I. López-Martínez, M. Penagos, C. Franco-Paredes, C. Deroche and C. Mascareñas, The safety and immunogenicity of influenza vaccine in children with asthma in Mexico,, International Journal of Infectious Diseases, 13 (2009), 469. doi: 10.1016/j.ijid.2008.08.015. Google Scholar

[62]

J. B. Plotkin, J. Dushoff and S. A. Levin, Hemagglutinin sequence clusters and the antigenic evolution of influenza A virus,, Proceedings of the National Academy of Sciences, 99 (2002). doi: 10.1073/pnas.082110799. Google Scholar

[63]

L. A. Rvachev and I. M. Jr. Longini, A mathematical model for the global spread of influenza,, Mathematical Biosciences, 75 (1985), 3. Google Scholar

[64]

A. N. Slepushkin, E. I. Bourtseva, A. L. Belyaev, L. N. Vlassova and E. L. Feodoritova, Influenza morbidity and some peculiarities of antiinfluenza immunity and prevention during influenza pandemics,, In International Congress Series, 1263 (2004), 787. Google Scholar

[65]

E. Spackman, D. E. Stallknecht, R. D. Slemons, K. Winker, D. L. Suarez, M. Scott and D. E. Swayne, Phylogenetic analyses of type A influenza genes in natural reservoir species in North America reveals genetic variation,, Virus Research, 114 (2005), 89. doi: 10.1016/j.virusres.2005.05.013. Google Scholar

[66]

SSA, "Situación Actual de la Epidemia [Current Epidemic Situation]," January 2010., URL , (). Google Scholar

[67]

C. Sun and Y. H. Hsieh, Global analysis of an SEIR model with varying population size and vaccination,, Applied Mathematical Modelling, (2009). Google Scholar

[68]

R. A. Trammell and L. A. Toth, Genetic susceptibility and resistance to influenza infection and disease in humans and mice,, Expert Review of Molecular Diagnostics, 8 (2008), 515. doi: 10.1586/14737159.8.4.515. Google Scholar

[69]

B. Valadez, "Aplicadas, Solo 10/100 de las Dosis Contra el A/H1N1," 2010., URL , (). Google Scholar

[70]

C. Viboud, P. Y. Boélle, S. Cauchemez, A. Lavenu, A. J. Valleron, A. Flahault and F. Carrat, Risk factors of influenza transmission in households,, In International Congress Series, 1263 (2004), 291. Google Scholar

[71]

C. Viboud, O. N. Bjornstad, D. L. Smith, L. Simonsen, M. A. Miller and B. T. Grenfell, Synchrony, waves, and spatial hierarchies in the spread of influenza,, Science, 312 (2006). doi: 10.1126/science.1125237. Google Scholar

[72]

D. Weycker, J. Edelsberg, M. Elizabeth Halloran, I. M. Longini, et al., Population-wide benefits of routine vaccination of children against influenza,, Vaccine, 23 (2005), 1284. doi: 10.1016/j.vaccine.2004.08.044. Google Scholar

[73]

T. White, S. Lavoie and M. D. Nettleman, Potential cost savings attributable to influenza vaccination of school-aged children,, Pediatrics, 103 (1999). doi: 10.1542/peds.103.6.e73. Google Scholar

[74]

Wikipedia, "World Population 1800-2100," 2010-., URL , (): 1800. Google Scholar

show all references

References:
[1]

R. Acuña-Soto, "Historical and Epidemiological Patterns of Influenza in México,", In, (2009). Google Scholar

[2]

R. Acuna-Soto, Death records from historical archives: A valuable source of epidemiological information,, Mathematical and Statistical Estimation Approaches in Epidemiology, (2009), 189. Google Scholar

[3]

F. S. Albright, P. Orlando, A. T. Pavia, G. G. Jackson and L. A. C. Albright, Evidence for a heritable predisposition to death due to influenza,, The Journal of Infectious Diseases, 197 (2008), 18. doi: 10.1086/524064. Google Scholar

[4]

L. K. Altman, "Many Swine Flu Cases Have no Fever,", New York Times, (2009). Google Scholar

[5]

V. Andreasen, J. Lin and S. A. Levin, The dynamics of co-circulating influenza strains conferring partial cross-immunity,, Journal of Mathematical Biology, 35 (1997), 825. Google Scholar

[6]

L. A. Angelova, Long-term immunity to influenza A (H1N1) in humans,, In Annales de l'Institut Pasteur. Virologie, 133 (1982), 267. Google Scholar

[7]

J. Arino and P. van den Driessche, A multi-city epidemic model,, Mathematical Population Studies, 10 (2003), 175. doi: 10.1080/08898480306720. Google Scholar

[8]

J. Arino, F. Brauer, P. van den Driessche, J. Watmough and J. Wu, A model for influenza with vaccination and antiviral treatment,, Journal of Theoretical Biology, 253 (2008), 118. doi: 10.1016/j.jtbi.2008.02.026. Google Scholar

[9]

O. V. Baroyan and L. A. Rvachev, Deterministic models of epidemics for a territory with a transport network,, Cybernetics and Systems Analysis, 3 (1967), 55. doi: 10.1007/BF01120008. Google Scholar

[10]

S. Bertozzi, A. Kelso, M. Tashiro, V. Savy, J. Farrar, M. Osterholm, S. Jameel and C. P. Muller, Pandemic flu: From the front lines. Interviewed by Declan Butler,, Nature, 461 (2009). Google Scholar

[11]

F. Brauer, Compartmental models in epidemiology,, Mathematical Epidemiology, (2008), 19. Google Scholar

[12]

F. Brauer and C. Castillo-Chavez, "Mathematical Models in Population Biology and Epidemiology,", Springer Verlag, (2001). Google Scholar

[13]

F. Brauer and C. Kribs-Zaleta, "An Introduction to Dynamical Systems for Biological Modeling" (series: chapman & hall/crc mathematical & computational biology),, 2010., (). Google Scholar

[14]

R. M. Bush, C. A. Bender, K. Subbarao, N. J. Cox and W. M. Fitch, Predicting the evolution of human influenza A,, Science, 286 (1999). doi: 10.1126/science.286.5446.1921. Google Scholar

[15]

P. Caley, D. J. Philp and K. McCracken, Quantifying social distancing arising from pandemic influenza,, Journal of The Royal Society Interface, 5 (2008). doi: 10.1098/rsif.2007.1197. Google Scholar

[16]

C. Castillo-Chavez, H. W. Hethcote, V. Andreasen, S. A. Levin and W. Liu, "Cross-Immunity in the Dynamics of Homogeneous and Heterogeneous Populations,", Mathematical Ecology, (1988). Google Scholar

[17]

C. Castillo-Chavez, H. W. Hethcote, V. Andreasen, S. A. Levin and W. M. Liu, Epidemiological models with age structure, proportionate mixing, and cross-immunity,, Journal of Mathematical Biology, 27 (1989), 233. Google Scholar

[18]

C. Castillo-Chavez, B. Song and J. Zhang, An epidemic model with virtual mass transportation: the case of smallpox in a large city,, Bioterrorism: Mathematical Modeling Applications in Homeland Security, (2003). Google Scholar

[19]

M. Chan, "Influenza A(H1N1),", Technical report, (2009). Google Scholar

[20]

G. Chowell, S. M. Bertozzi, M. A. Colchero, H. Lopez-Gatell, C. Alpuche-Aranda, M. Hernandez and M. A. Miller, Severe respiratory disease concurrent with the circulation of H1N1 influenza,, The New England Journal of Medicine, 361 (2009). doi: 10.1056/NEJMoa0904023. Google Scholar

[21]

G. Chowell, C. Viboud, X. Wang, S. M. Bertozzi and M. A. Miller, Adaptive vaccination strategies to mitigate pandemic influenza: Mexico as a case study,, 2009., (). Google Scholar

[22]

G. Chowell, C. Viboud, L. Simonsen, M. A. Miller and R. Acuna-Soto, Mortality patterns associated with the 1918 influenza pandemic in Mexico: Evidence for a spring herald wave and lack of preexistingiImmunity in older populations,, The Journal of Infectious Diseases, (2010). Google Scholar

[23]

V. Colizza, A. Barrat, M. Barthelemy, A. Valleron and A. Vespignani, Modeling the worldwide spread of pandemic influenza: Baseline case and containment interventions,, PLoS Medicine, 4 (2007). doi: 10.1371/journal.pmed.0040013. Google Scholar

[24]

J. A. Córdova-Villalobos, Lessons learned and preparing for the future: Influenza a/h1n1 in méxico,, Plenary 1, (2009). Google Scholar

[25]

R. B. Couch and J. A. Kasel, Immunity to influenza in man,, Annual Reviews in Microbiology, 37 (1983), 529. doi: 10.1146/annurev.mi.37.100183.002525. Google Scholar

[26]

G. Del Giudice, K. J. Stittelaar, G. van Amerongen, J. Simon, A. D. M. E. Osterhaus, K. Stöhr and R. Rappuoli, Seasonal influenza vaccine provides priming for A/H1N1 immunization,, Science Translational Medicine, 1 (2009). Google Scholar

[27]

Instituto Mexicano del Transporte, North american transportation statistics database, 2006-., URL , (). Google Scholar

[28]

M. Falco, Cdc: Production of h1n1 flu lagging, 2009., URL , (). Google Scholar

[29]

Z. Feng, W. Huang and C. Castillo-Chavez, On the role of variable latent periods in mathematical models for tuberculosis,, Journal of Dynamics and Differential Equations, 13 (2001), 425. Google Scholar

[30]

A. Flahault, X. De Lamballerie and T. Hanslik, Symptomatic infections less frequent with H1N1pdm than with seasonal strains,, 2009., (). Google Scholar

[31]

T. Garske, J. Legrand, C. A. Donnelly, H. Ward, S. Cauchemez, C. Fraser, N. M. Ferguson and A. C. Ghani, Assessing the severity of the novel influenza A/H1N1 pandemic,, British Medical Journal, 339 (2009). Google Scholar

[32]

Mexico City guide, "Transport," 2010., URL , (). Google Scholar

[33]

M. Haber, I. R. A. M. Longini JR and M. E. Halloran, Measures of the effects of vaccination in a randomly mixing population,, International Journal of Epidemiology, 20 (1991). doi: 10.1093/ije/20.1.300. Google Scholar

[34]

K. Hadeler and C. Castillo-Chavez, A core group model for disease transmission,, Mathematical Biosciences, 128 (1995), 41. doi: 10.1016/0025-5564(94)00066-9. Google Scholar

[35]

M. E. Halloran, M. Haber, I. M. Longini Jr and C. J. Struchiner, Direct and indirect effects in vaccine efficacy and effectiveness,, American Journal of Epidemiology, 133 (1991). Google Scholar

[36]

W. Huang, K. L. Cooke and C. Castillo-Chavez, Stability and bifurcation for a multiple-group model for the dynamics of HIV/AIDS transmission,, SIAM Journal on Applied Mathematics, (1992), 835. Google Scholar

[37]

J. Hunter, D. Dale and M. Droettboom, "Matplotlib: A Python 2d Plotting Library," 2008-., URL , (). Google Scholar

[38]

A. C. Hurt, J. Ernest, Y. M. Deng, P. Iannello, T. G. Besselaar, C. Birch, P. Buchy, M. Chittaganpitch, S. C. Chiu, D. Dwyer, et al., "Emergence and spread of oseltamivir-resistant A (H1N1) influenza viruses in Oceania, South East Asia and South Africa,", Antiviral Research, (2009). Google Scholar

[39]

E. S. Hurwitz, M. Haber, A. Chang, T. Shope, S. Teo, M. Ginsberg, N. Waecker and N. J. Cox, Effectiveness of influenza vaccination of day care children in reducing influenza-related morbidity among household contacts,, The Journal of the American Medical Association, 284 (2000). Google Scholar

[40]

J. M. Hyman and T. Laforce, Modeling the spread of in fluecnza among cities,, Biomathematical Modeling Applications for Homeland Security, (2003), 215. Google Scholar

[41]

E. Jones, T. Oliphant, P. Peterson, et al., "SciPy: Open Source Scientific Tools for Python," 2001-., URL , (). Google Scholar

[42]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics-I,, Proceedings of the Royal Society, 115A (1927), 700. Google Scholar

[43]

K. Khan, J. Arino, W. Hu, P. Raposo, J. Sears, F. Calderon, C. Heidebrecht, M. Macdonald, J. Liauw, A. Chan, et al., Spread of a novel influenza A (H1N1) virus via global airline transportation,, The New England Journal of Medicine, 361 (2009). doi: 10.1056/NEJMc0904559. Google Scholar

[44]

C. D. Kozul, K. H. Ely, R. I. Enelow and J. W. Hamilton, Low-dose arsenic compromises the immune response to influenza a infection in vivo,, Environ Health Perspect. PubMed, 117 (2009), 1441. Google Scholar

[45]

R. J. Kurukulaaratchy, S. Matthews and S. H. Arshad, Does environment mediate earlier onset of the persistent childhood asthma phenotype?,, Pediatrics, 113 (2004). doi: 10.1542/peds.113.2.345. Google Scholar

[46]

P. R. S. Lagacé-Wiens, E. Rubinstein and A. Gumel, "Influenza Epidemiology: Past, Present, and Future,", Critical Care Medicine, (2010). Google Scholar

[47]

M. A. Lezana-Fernández, "A/h1n1 Epidemic in México: Lessons Learned,", Talk at, (2009). Google Scholar

[48]

F. Libenson, "Llegaron al Edomex 66 mil Vacunas Contra AH1N1," 2009., http://elinformantemexico.com/index.php/noticias/llegaron-al-edomex-66-mil-v acunas-contra-ah1n1-franklin-libenson-violante.html., (). Google Scholar

[49]

H. C. Lin, M. J. Chen, S. J. Chang, M. T. Liu, H. S. Wu, J. H. Chuang, J. H. Chou, H. S. Kuo and S. C. Chang, Investigation of the first two cases of oseltamivir-resistant pandemic (H1N1) 2009 virus in Taiwan,, Taiwan Epidemiology Bulletin, (2009), 815. Google Scholar

[50]

M. López-Cervantes, A. Venado, A. Moreno, R. L. Pacheco-Domínguez and G. Ortega-Pierres, On the spread of the novel influenza A (H1N1) virus in Mexico,, The Journal of Infection in Developing Countries, 3 (2009). Google Scholar

[51]

Mexicocity.com.mx, "Taxi Cabs," 2010., URL , (). Google Scholar

[52]

M. A. Miller, C. Viboud, M. Balinska and L. Simonsen, The signature features of influenza pandemics-implications for policy,, The New England Journal of Medicine, 360 (2009). Google Scholar

[53]

A. S. Monto, Interrupting the transmission of respiratory tract infections: Theory and practice,, Clinical Infectious Diseases, 28 (1999), 200. Google Scholar

[54]

A. Moscona, Global transmission of oseltamivir-resistant influenza,, The New England Journal of Medicine, (2009). Google Scholar

[55]

M. R. Moser, T. R. Bender, H. S. Margolis, G. R. Noble, A. P. Kendal and D. G. Ritter, An outbreak of influenza aboard a commercial airliner,, American Journal of Epidemiology, 110 (1979). Google Scholar

[56]

M. I. Nelson and E. C. Holmes, The evolution of epidemic influenza,, Nature Reviews Genetics, 8 (2007), 196. Google Scholar

[57]

H. Nishiura, C. Castillo-Chavez, M. Safan and G. Chowell, Transmission potential of the new influenza A (H1N1) virus and its age-specificity in Japan,, Euro Surveill, 14 (2009). Google Scholar

[58]

SSA Notimex, "Este Lunes Llegan las Vacunas Contra Influenza AH1N1,", Notimex, (2009). Google Scholar

[59]

M. Nuno, G. Chowell and A. B. Gumel, Assessing the role of basic control measures, antivirals and vaccine in curtailing pandemic influenza: Scenarios for the US, UK and the Netherlands,, Journal of the Royal Society Interface, 4 (2007). doi: 10.1098/rsif.2006.0186. Google Scholar

[60]

M. Nuno, G. Chowell, X. Wang and C. Castillo-Chavez, On the role of cross-immunity and vaccines on the survival of less fit flu-strains,, Theoretical Population Biology, 71 (2007), 20. doi: 10.1016/j.tpb.2006.07.002. Google Scholar

[61]

A. Pedroza, J. G. Huerta, M. de la Luz Garcia, A. Rojas, I. López-Martínez, M. Penagos, C. Franco-Paredes, C. Deroche and C. Mascareñas, The safety and immunogenicity of influenza vaccine in children with asthma in Mexico,, International Journal of Infectious Diseases, 13 (2009), 469. doi: 10.1016/j.ijid.2008.08.015. Google Scholar

[62]

J. B. Plotkin, J. Dushoff and S. A. Levin, Hemagglutinin sequence clusters and the antigenic evolution of influenza A virus,, Proceedings of the National Academy of Sciences, 99 (2002). doi: 10.1073/pnas.082110799. Google Scholar

[63]

L. A. Rvachev and I. M. Jr. Longini, A mathematical model for the global spread of influenza,, Mathematical Biosciences, 75 (1985), 3. Google Scholar

[64]

A. N. Slepushkin, E. I. Bourtseva, A. L. Belyaev, L. N. Vlassova and E. L. Feodoritova, Influenza morbidity and some peculiarities of antiinfluenza immunity and prevention during influenza pandemics,, In International Congress Series, 1263 (2004), 787. Google Scholar

[65]

E. Spackman, D. E. Stallknecht, R. D. Slemons, K. Winker, D. L. Suarez, M. Scott and D. E. Swayne, Phylogenetic analyses of type A influenza genes in natural reservoir species in North America reveals genetic variation,, Virus Research, 114 (2005), 89. doi: 10.1016/j.virusres.2005.05.013. Google Scholar

[66]

SSA, "Situación Actual de la Epidemia [Current Epidemic Situation]," January 2010., URL , (). Google Scholar

[67]

C. Sun and Y. H. Hsieh, Global analysis of an SEIR model with varying population size and vaccination,, Applied Mathematical Modelling, (2009). Google Scholar

[68]

R. A. Trammell and L. A. Toth, Genetic susceptibility and resistance to influenza infection and disease in humans and mice,, Expert Review of Molecular Diagnostics, 8 (2008), 515. doi: 10.1586/14737159.8.4.515. Google Scholar

[69]

B. Valadez, "Aplicadas, Solo 10/100 de las Dosis Contra el A/H1N1," 2010., URL , (). Google Scholar

[70]

C. Viboud, P. Y. Boélle, S. Cauchemez, A. Lavenu, A. J. Valleron, A. Flahault and F. Carrat, Risk factors of influenza transmission in households,, In International Congress Series, 1263 (2004), 291. Google Scholar

[71]

C. Viboud, O. N. Bjornstad, D. L. Smith, L. Simonsen, M. A. Miller and B. T. Grenfell, Synchrony, waves, and spatial hierarchies in the spread of influenza,, Science, 312 (2006). doi: 10.1126/science.1125237. Google Scholar

[72]

D. Weycker, J. Edelsberg, M. Elizabeth Halloran, I. M. Longini, et al., Population-wide benefits of routine vaccination of children against influenza,, Vaccine, 23 (2005), 1284. doi: 10.1016/j.vaccine.2004.08.044. Google Scholar

[73]

T. White, S. Lavoie and M. D. Nettleman, Potential cost savings attributable to influenza vaccination of school-aged children,, Pediatrics, 103 (1999). doi: 10.1542/peds.103.6.e73. Google Scholar

[74]

Wikipedia, "World Population 1800-2100," 2010-., URL , (): 1800. Google Scholar

[1]

Eunha Shim. Optimal strategies of social distancing and vaccination against seasonal influenza. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1615-1634. doi: 10.3934/mbe.2013.10.1615

[2]

Kasia A. Pawelek, Anne Oeldorf-Hirsch, Libin Rong. Modeling the impact of twitter on influenza epidemics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1337-1356. doi: 10.3934/mbe.2014.11.1337

[3]

Olivia Prosper, Omar Saucedo, Doria Thompson, Griselle Torres-Garcia, Xiaohong Wang, Carlos Castillo-Chavez. Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza. Mathematical Biosciences & Engineering, 2011, 8 (1) : 141-170. doi: 10.3934/mbe.2011.8.141

[4]

Pierre Magal, Glenn F. Webb, Yixiang Wu. Spatial spread of epidemic diseases in geographical settings: Seasonal influenza epidemics in Puerto Rico. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019223

[5]

Xun-Yang Wang, Khalid Hattaf, Hai-Feng Huo, Hong Xiang. Stability analysis of a delayed social epidemics model with general contact rate and its optimal control. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1267-1285. doi: 10.3934/jimo.2016.12.1267

[6]

Plamen Stefanov, Yang Yang. Multiwave tomography with reflectors: Landweber's iteration. Inverse Problems & Imaging, 2017, 11 (2) : 373-401. doi: 10.3934/ipi.2017018

[7]

David Kinderlehrer, Adrian Tudorascu. Transport via mass transportation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 311-338. doi: 10.3934/dcdsb.2006.6.311

[8]

Plamen Stefanov, Gunther Uhlmann. Instability of the linearized problem in multiwave tomography of recovery both the source and the speed. Inverse Problems & Imaging, 2013, 7 (4) : 1367-1377. doi: 10.3934/ipi.2013.7.1367

[9]

Juan Pablo Aparicio, Carlos Castillo-Chávez. Mathematical modelling of tuberculosis epidemics. Mathematical Biosciences & Engineering, 2009, 6 (2) : 209-237. doi: 10.3934/mbe.2009.6.209

[10]

Jacques Demongeot, Jean Gaudart, Julie Mintsa, Mustapha Rachdi. Demography in epidemics modelling. Communications on Pure & Applied Analysis, 2012, 11 (1) : 61-82. doi: 10.3934/cpaa.2012.11.61

[11]

G.S. Liu, J.Z. Zhang. Decision making of transportation plan, a bilevel transportation problem approach. Journal of Industrial & Management Optimization, 2005, 1 (3) : 305-314. doi: 10.3934/jimo.2005.1.305

[12]

Oren Barnea, Rami Yaari, Guy Katriel, Lewi Stone. Modelling seasonal influenza in Israel. Mathematical Biosciences & Engineering, 2011, 8 (2) : 561-573. doi: 10.3934/mbe.2011.8.561

[13]

Shu Liao, Jin Wang, Jianjun Paul Tian. A computational study of avian influenza. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1499-1509. doi: 10.3934/dcdss.2011.4.1499

[14]

Vikram Krishnamurthy, William Hoiles. Information diffusion in social sensing. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 365-411. doi: 10.3934/naco.2016017

[15]

Werner Creixell, Juan Carlos Losada, Tomás Arredondo, Patricio Olivares, Rosa María Benito. Serendipity in social networks. Networks & Heterogeneous Media, 2012, 7 (3) : 363-371. doi: 10.3934/nhm.2012.7.363

[16]

Pradeep Dubey, Rahul Garg, Bernard De Meyer. Competing for customers in a social network. Journal of Dynamics & Games, 2014, 1 (3) : 377-409. doi: 10.3934/jdg.2014.1.377

[17]

Yuki Kumagai. Social networks and global transactions. Journal of Dynamics & Games, 2019, 6 (3) : 211-219. doi: 10.3934/jdg.2019015

[18]

Hal L. Smith, Horst R. Thieme. Chemostats and epidemics: Competition for nutrients/hosts. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1635-1650. doi: 10.3934/mbe.2013.10.1635

[19]

Cristina Cross, Alysse Edwards, Dayna Mercadante, Jorge Rebaza. Dynamics of a networked connectivity model of epidemics. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3379-3390. doi: 10.3934/dcdsb.2016102

[20]

Folashade B. Agusto, Abba B. Gumel. Theoretical assessment of avian influenza vaccine. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 1-25. doi: 10.3934/dcdsb.2010.13.1

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (0)

[Back to Top]