2011, 8(1): 223-238. doi: 10.3934/mbe.2011.8.223

A perspective on the 2009 A/H1N1 influenza pandemic in Mexico

1. 

Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Delegación Coyoacán, México D.F. 04510, Mexico, Mexico

2. 

Mathematical, Computational & Modeling Sciences Center, School of Human Evolution and Social Change, Arizona State University, Box 872402, Tempe, AZ 85287

Received  June 2010 Revised  September 2010 Published  January 2011

In this article, we provide a chronological description of the 2009 H1N1 influenza pandemic in Mexico from the detection of severe respiratory disease among young adults in central Mexico and the identification of the novel swine-origin influenza virus to the response of Mexican public health authorities with the swift implementation of the National Preparedness and Response Plan for Pandemic Influenza. Furthermore, we review some features of the 2009 H1N1 influenza pandemic in Mexico in relation to the devastating 1918-1920 influenza pandemic and discuss opportunities for the application of mathematical modeling in the transmission dynamics of pandemic influenza. The value of historical data in increasing our understanding of past pandemic events is highlighted.
Citation: Rodolfo Acuňa-Soto, Luis Castaňeda-Davila, Gerardo Chowell. A perspective on the 2009 A/H1N1 influenza pandemic in Mexico. Mathematical Biosciences & Engineering, 2011, 8 (1) : 223-238. doi: 10.3934/mbe.2011.8.223
References:
[1]

S. Akira, S. Uematsu and O. Takeuchi, Pathogen recognition and innate immunity,, Cell, 124 (2006), 783.   Google Scholar

[2]

P. Ansstasiou-Fotaki, E. Deligeoroglou and G. Kreatsas, The GARDASIL vaccine can prevent cervical carcinoma caused by human papilloma virus (HPV) (results from our participation and from the study carried out in Greece),, Akush Ginekol (Sofiia), 46 (2007), 17.   Google Scholar

[3]

G. J. Atkins, M. N. Fleeton and B. J. Sheahan, Therapeutic and prophylactic applications of alphavirus vectors,, Expert Rev. Mol. Med., 10 (2008).  doi: 10.1017/S1462399408000859.  Google Scholar

[4]

O. T. Avery and W. F. Goebel, Chemo-immunological studies on conjugated carbohydrate-proteins: II. Immunological specificity of synthetic sugar-protein antigens,, J. Exp. Med., 50 (1929), 533.  doi: 10.1084/jem.50.4.533.  Google Scholar

[5]

R. Barrett, C. W. Kuzawa, T. McDade and G. J. Armelagos, Emerging and re-emerging infectious diseases: The third epidemiologic transition,, Annu. Rev. Anthropol., 27 (1998), 247.  doi: 10.1146/annurev.anthro.27.1.247.  Google Scholar

[6]

C. Barrios, P. Brawand, M. Berney, C. Brandt, P. H. Lambert and C. A. Siegrist, Neonatal and early life immune responses to various forms of vaccine antigens qualitatively differ from adult responses: Predominance of a Th2-biased pattern which persists after adult boosting,, Eur. J. Immunol., 26 (1996), 1489.  doi: 10.1002/eji.1830260713.  Google Scholar

[7]

J. M. Barry, "The Great Influenza: The Story of the Deadliest Pandemic in History,", revised ed. Penguin Books, (2004).   Google Scholar

[8]

J. G. Bartlett, Planning for avian influenza,, Ann. Intern. Med., 145 (2006), 141.   Google Scholar

[9]

G. M. Beards and D. W. Brown, The antigenic diversity of rotaviruses: Significance to epidemiology and vaccine strategies,, Eur. J. Epidemiol., 4 (1988), 1.  doi: 10.1007/BF00152685.  Google Scholar

[10]

A. S. Beare and R. G. Webster, Replication of avian influenza viruses in humans,, Arch. Virol., 119 (1991), 37.  doi: 10.1007/BF01314321.  Google Scholar

[11]

M. Beauregard and M. A. Hefford, Enhancement of essential amino acid contents in crops by genetic engineering and protein design,, Plant Biotechnol. J., 4 (2006), 561.   Google Scholar

[12]

M. W. Beijerinck, A Contagium vivum fluidum as the cause of the mosaic disease of tobacco leaves,, Centralblatt fur Bacteriologie und Parasitenkunde, 5 (1899), 27.   Google Scholar

[13]

E. A. Belongia, S. A. Irving, S. C. Waring, L. A. Coleman, J. K. Meece, M. Vandermause, S. Lindstrom, D. Kempf and D. K. Shay, Clinical characteristics and 30-day outcomes for influenza A 2009 (H1N1), 2008-2009 (H1N1) and 2007-2008 (H3N2) infections,, JAMA, 304 (2010), 1091.   Google Scholar

[14]

R. B. Belshe, Current status of live attenuated influenza virus vaccine in the US,, Virus Res., 103 (2004), 177.  doi: 10.1016/j.virusres.2004.02.031.  Google Scholar

[15]

R. B. Belshe, P. M. Mendelman, J. Treanor, J. King, W. C. Gruber, P. Piedra, D. I. Bernstein, F. G. Hayden, K. Kotloff, K. Zangwill, D. Iacuzio and M. Wolff, The efficacy of live attenuated, cold-adapted, trivalent, intranasal influenzavirus vaccine in children,, N. Engl. J. Med., 338 (1998), 1405.  doi: 10.1056/NEJM199805143382002.  Google Scholar

[16]

R. B. Belshe, K. L. Nichol, S. B. Black, H. Shinefield, J. Cordova, R. Walker, C. Hessel, I. Cho and P. M. Mendelman, Safety, efficacy, and effectiveness of live, attenuated, cold-adapted influenza vaccine in an indicated population aged 5-49 years,, Clin. Infect Dis., 39 (2004), 920.  doi: 10.1086/423001.  Google Scholar

[17]

D. R. Bentley and G. G. Brownlee, Sequence of the N2 neuraminidase from influenza virus A/NT/60/68,, Nucleic Acids Res., 10 (1982), 5033.  doi: 10.1093/nar/10.16.5033.  Google Scholar

[18]

O. G. Berlin, S. M. Novak, R. K. Porschen, E. G. Long, G. N. Stelma and F. W. Schaeffer, Recovery of Cyclospora organisms from patients with prolonged diarrhea,, Clin. Infect Dis., 18 (1994), 606.   Google Scholar

[19]

P. L. Bhalla, Genetic engineering of wheat-current challenges and opportunities,, Trends Biotechnol., 24 (2006), 305.  doi: 10.1016/j.tibtech.2006.04.008.  Google Scholar

[20]

M. E. Bianchi, DAMPs, PAMPs and alarmins: all we need to know about danger,, J. Leukoc Biol., 81 (2007), 1.  doi: 10.1189/jlb.0306164.  Google Scholar

[21]

O. O. Bilukha and N. Rosenstein, Prevention and control of meningococcal disease,, Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm. Rep., 54 (2005), 1.   Google Scholar

[22]

R. Bock, Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming,, Curr. Opin. Biotechnol, 18 (2007), 100.  doi: 10.1016/j.copbio.2006.12.001.  Google Scholar

[23]

B. Bottazzi, A. Doni, C. Garlanda and A. Mantovani, An integrated view of humoral innate immunity: Pentraxins as a paradigm,, Annu. Rev. Immunol., 28 (2010), 157.  doi: 10.1146/annurev-immunol-030409-101305.  Google Scholar

[24]

D. J. Brayden, M. A. Jepson and A. W. Baird, Keynote review: Intestinal Peyer's patch M cells and oral vaccine targeting,, Drug Discov. Today, 10 (2005), 1145.  doi: 10.1016/S1359-6446(05)03536-1.  Google Scholar

[25]

S. Brighenti and J. Andersson, Induction and regulation of CD8+ cytolytic T cells in human tuberculosis and HIV infection,, Biochem. Biophys Res. Commun., 396 (2010), 50.  doi: 10.1016/j.bbrc.2010.02.141.  Google Scholar

[26]

I. H. Brown, D. J. Alexander, P. Chakraverty, P. A. Harris and R. J. Manvell, Isolation of an influenza A virus of unusual subtype (H1N7) from pigs in England, and the subsequent experimental transmission from pig to pig,, Vet. Microbiol., 39 (1994), 125.  doi: 10.1016/0378-1135(94)90093-0.  Google Scholar

[27]

I. H. Brown, P. A. Harris, J. W. McCauley and D. J. Alexander, Multiple genetic reassortment of avian and human influenza A viruses in European pigs, resulting in the emergence of an H1N2 virus of novel genotype,, J. Gen. Virol., 79 (Pt 12) (1998), 2947.   Google Scholar

[28]

A. Calmette, Preventive vaccination against tuberculosis with BCG,, Proc. R. Soc. Med., 24 (1931), 1481.   Google Scholar

[29]

L. A. Campbell, C. C. Kuo and J. T. Grayston, Chlamydia pneumoniae and cardiovascular disease,, Emerg. Infect Dis., 4 (1998), 571.  doi: 10.3201/eid0404.980407.  Google Scholar

[30]

M. A. Campbell, H. A. Fitzgerald and P. C. Ronald, Engineering pathogen resistance in crop plants,, Transgenic Res., 11 (2002), 599.  doi: 10.1023/A:1021109509953.  Google Scholar

[31]

M. R. Castrucci, I. Donatelli, L. Sidoli, G. Barigazzi, Y. Kawaoka and R. G. Webster, Genetic reassortment between avian and human influenza A viruses in Italian pigs,, Virology, 193 (1993), 503.  doi: 10.1006/viro.1993.1155.  Google Scholar

[32]

T. M. Chambers, V. S. Hinshaw, Y. Kawaoka, B. C. Easterday and R. G. Webster, Influenza viral infection of swine in the United States 1988-1989,, Arch. Virol., 116 (1991), 261.  doi: 10.1007/BF01319247.  Google Scholar

[33]

Z. Chen, A. Aspelund, G. Kemble and H. Jin, Genetic mapping of the cold-adapted phenotype of B/Ann Arbor/1/66, the master donor virus for live attenuated influenza vaccines (FluMist),, Virology, 345 (2006), 416.  doi: 10.1016/j.virol.2005.10.005.  Google Scholar

[34]

K. M. Citron, BCG vaccination against tuberculosis: International perspectives,, Bmj, 306 (1993), 222.   Google Scholar

[35]

H. F. Clark, P. A. Offit, R. W. Ellis, J. J. Eiden, D. Krah, A. R. Shaw, M. Pichichero, J. J. Treanor, F. E. Borian, L. M. Bell and S. A. Plotkin, The development of multivalent bovine rotavirus (strain WC3) reassortant vaccine for infants,, J. Infect Dis., 174 Suppl 1S (1996), 73.   Google Scholar

[36]

J. Cohen and M. Enserink, Swine flu. after delays, WHO agrees: The 2009 pandemic has begun,, Science, 324 (2009), 1496.  doi: 10.1126/science.324_1496.  Google Scholar

[37]

G. A. Colditz, C. S. Berkey, F. Mosteller, T. F. Brewer, M. E. Wilson, E. Burdick and H. V. Fineberg, The efficacy of bacillus Calmette-Guerin vaccination of newborns and infants in the prevention of tuberculosis: Meta-analyses of the published literature,, Pediatrics, 96 (1995), 29.   Google Scholar

[38]

D. B. Collinge, H. J. Jorgensen, O. S. Lund and M. F. Lyngkjaer, Engineering pathogen resistance in crop plants: Current trends and future prospects,, Annu. Rev. Phytopathol., 48 (2010), 269.  doi: 10.1146/annurev-phyto-073009-114430.  Google Scholar

[39]

G. Corradin and G. del Giudice, "Novel Adjuvants for Vaccines,", Current Medicinal Chemistry Anti-inflammatory and anti-allergy agents 4, (2005).   Google Scholar

[40]

R. Curtiss, 3rd, W. Xin, Y. Li, W. Kong, S. Y. Wanda, B. Gunn and S. Wang, New technologies in using recombinant attenuated Salmonella vaccine vectors,, Crit. Rev. Immunol., 30 (2010), 255.   Google Scholar

[41]

G. De Becker, V. Moulin, B. Pajak, C. Bruck, M. Francotte, C. Thiriart, J. Urbain and M. Moser, The adjuvant monophosphoryl lipid A increases the function of antigen-presenting cells,, Int. Immunol., 12 (2000), 807.  doi: 10.1093/intimm/12.6.807.  Google Scholar

[42]

P. Delves, S. Martin, D. Burton and I. Roitt, "Essential Immunology,", 11th ed. Wiley-Blackwell, (2006).   Google Scholar

[43]

J. Diamond, "Guns, Gems and Steel: The Fates of Human Societies,", 1st ed., (1997).   Google Scholar

[44]

R. Dommett, M. Zilbauer, J. T. George and M. Bajaj-Elliott, Innate immune defence in the human gastrointestinal tract,, Mol. Immunol., 42 (2005), 903.  doi: 10.1016/j.molimm.2004.12.004.  Google Scholar

[45]

M. L. Duran-Reynals, "The Fever Bark Tree: The Pageant of Quinine,", Doubleday, (1946).   Google Scholar

[46]

J. L. Ebersole, M. A. Taubman, D. J. Smith and J. M. Goodson, Gingival crevicular fluid antibody to oral microorganisms. I. Method of collection and analysis of antibody,, J. Periodontal Res., 19 (1984), 124.  doi: 10.1111/j.1600-0765.1984.tb00801.x.  Google Scholar

[47]

P. Ehrlich, Ueber moderne Chemotherapie. Vortrag gehalten in der X,, Tagung der Deutschen Dermatologischen Gesellschaft. Akademische Verlagsgesellschaft m.b.H., (1908).   Google Scholar

[48]

T. C. Elleman, A. A. Azad and C. W. Ward, Neuraminidase gene from the early Asian strain of human influenza virus, A/RI/5-/57 (H2N2),, Nucleic Acids Res., 10 (1982), 7005.  doi: 10.1093/nar/10.21.7005.  Google Scholar

[49]

L. Epstein and S. Bassein, Patterns of pesticide use in California and the implications for strategies for reduction of pesticides,, Annu. Rev. Phytopathol., 41 (2003), 351.  doi: 10.1146/annurev.phyto.41.052002.095612.  Google Scholar

[50]

N. Ferry, M. G. Edwards, J. A. Gatehouse and A. M. Gatehouse, Plant-insect interactions: molecular approaches to insect resistance,, Curr. Opin. Biotechnol., 15 (2004), 155.  doi: 10.1016/j.copbio.2004.01.008.  Google Scholar

[51]

R. H. Ffrench-Constant, P. J. Daborn and G. Le Goff, The genetics and genomics of insecticide resistance,, Trends Genet., 20 (2004), 163.  doi: 10.1016/j.tig.2004.01.003.  Google Scholar

[52]

A. Fleming, On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenza,, Brit. J. Exp. Path., 10 (1929), 226.   Google Scholar

[53]

J. E. Galen and M. M. Levine, Can a 'flawless' live vector vaccine strain be engineered?, Trends Microbiol., 9 (2001), 372.  doi: 10.1016/S0966-842X(01)02096-0.  Google Scholar

[54]

L. Garrett, "The Coming Plague: Newly Emerging Diseases in a World Out of Balance,", 1st ed. Penguin, (1995).   Google Scholar

[55]

R. J. Garten, C. T. Davis, C. A. Russell, B. Shu, S. Lindstrom, A. Balish, W. M. Sessions, X. Xu, E. Skepner, V. Deyde, M. Okomo-Adhiambo, L. Gubareva, J. Barnes, C. B. Smith, S. L. Emery, M. J. Hillman, P. Rivailler, J. Smagala, M. de Graaf, D. F. Burke, Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans,, Science, 325 (2009), 197.   Google Scholar

show all references

References:
[1]

S. Akira, S. Uematsu and O. Takeuchi, Pathogen recognition and innate immunity,, Cell, 124 (2006), 783.   Google Scholar

[2]

P. Ansstasiou-Fotaki, E. Deligeoroglou and G. Kreatsas, The GARDASIL vaccine can prevent cervical carcinoma caused by human papilloma virus (HPV) (results from our participation and from the study carried out in Greece),, Akush Ginekol (Sofiia), 46 (2007), 17.   Google Scholar

[3]

G. J. Atkins, M. N. Fleeton and B. J. Sheahan, Therapeutic and prophylactic applications of alphavirus vectors,, Expert Rev. Mol. Med., 10 (2008).  doi: 10.1017/S1462399408000859.  Google Scholar

[4]

O. T. Avery and W. F. Goebel, Chemo-immunological studies on conjugated carbohydrate-proteins: II. Immunological specificity of synthetic sugar-protein antigens,, J. Exp. Med., 50 (1929), 533.  doi: 10.1084/jem.50.4.533.  Google Scholar

[5]

R. Barrett, C. W. Kuzawa, T. McDade and G. J. Armelagos, Emerging and re-emerging infectious diseases: The third epidemiologic transition,, Annu. Rev. Anthropol., 27 (1998), 247.  doi: 10.1146/annurev.anthro.27.1.247.  Google Scholar

[6]

C. Barrios, P. Brawand, M. Berney, C. Brandt, P. H. Lambert and C. A. Siegrist, Neonatal and early life immune responses to various forms of vaccine antigens qualitatively differ from adult responses: Predominance of a Th2-biased pattern which persists after adult boosting,, Eur. J. Immunol., 26 (1996), 1489.  doi: 10.1002/eji.1830260713.  Google Scholar

[7]

J. M. Barry, "The Great Influenza: The Story of the Deadliest Pandemic in History,", revised ed. Penguin Books, (2004).   Google Scholar

[8]

J. G. Bartlett, Planning for avian influenza,, Ann. Intern. Med., 145 (2006), 141.   Google Scholar

[9]

G. M. Beards and D. W. Brown, The antigenic diversity of rotaviruses: Significance to epidemiology and vaccine strategies,, Eur. J. Epidemiol., 4 (1988), 1.  doi: 10.1007/BF00152685.  Google Scholar

[10]

A. S. Beare and R. G. Webster, Replication of avian influenza viruses in humans,, Arch. Virol., 119 (1991), 37.  doi: 10.1007/BF01314321.  Google Scholar

[11]

M. Beauregard and M. A. Hefford, Enhancement of essential amino acid contents in crops by genetic engineering and protein design,, Plant Biotechnol. J., 4 (2006), 561.   Google Scholar

[12]

M. W. Beijerinck, A Contagium vivum fluidum as the cause of the mosaic disease of tobacco leaves,, Centralblatt fur Bacteriologie und Parasitenkunde, 5 (1899), 27.   Google Scholar

[13]

E. A. Belongia, S. A. Irving, S. C. Waring, L. A. Coleman, J. K. Meece, M. Vandermause, S. Lindstrom, D. Kempf and D. K. Shay, Clinical characteristics and 30-day outcomes for influenza A 2009 (H1N1), 2008-2009 (H1N1) and 2007-2008 (H3N2) infections,, JAMA, 304 (2010), 1091.   Google Scholar

[14]

R. B. Belshe, Current status of live attenuated influenza virus vaccine in the US,, Virus Res., 103 (2004), 177.  doi: 10.1016/j.virusres.2004.02.031.  Google Scholar

[15]

R. B. Belshe, P. M. Mendelman, J. Treanor, J. King, W. C. Gruber, P. Piedra, D. I. Bernstein, F. G. Hayden, K. Kotloff, K. Zangwill, D. Iacuzio and M. Wolff, The efficacy of live attenuated, cold-adapted, trivalent, intranasal influenzavirus vaccine in children,, N. Engl. J. Med., 338 (1998), 1405.  doi: 10.1056/NEJM199805143382002.  Google Scholar

[16]

R. B. Belshe, K. L. Nichol, S. B. Black, H. Shinefield, J. Cordova, R. Walker, C. Hessel, I. Cho and P. M. Mendelman, Safety, efficacy, and effectiveness of live, attenuated, cold-adapted influenza vaccine in an indicated population aged 5-49 years,, Clin. Infect Dis., 39 (2004), 920.  doi: 10.1086/423001.  Google Scholar

[17]

D. R. Bentley and G. G. Brownlee, Sequence of the N2 neuraminidase from influenza virus A/NT/60/68,, Nucleic Acids Res., 10 (1982), 5033.  doi: 10.1093/nar/10.16.5033.  Google Scholar

[18]

O. G. Berlin, S. M. Novak, R. K. Porschen, E. G. Long, G. N. Stelma and F. W. Schaeffer, Recovery of Cyclospora organisms from patients with prolonged diarrhea,, Clin. Infect Dis., 18 (1994), 606.   Google Scholar

[19]

P. L. Bhalla, Genetic engineering of wheat-current challenges and opportunities,, Trends Biotechnol., 24 (2006), 305.  doi: 10.1016/j.tibtech.2006.04.008.  Google Scholar

[20]

M. E. Bianchi, DAMPs, PAMPs and alarmins: all we need to know about danger,, J. Leukoc Biol., 81 (2007), 1.  doi: 10.1189/jlb.0306164.  Google Scholar

[21]

O. O. Bilukha and N. Rosenstein, Prevention and control of meningococcal disease,, Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm. Rep., 54 (2005), 1.   Google Scholar

[22]

R. Bock, Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming,, Curr. Opin. Biotechnol, 18 (2007), 100.  doi: 10.1016/j.copbio.2006.12.001.  Google Scholar

[23]

B. Bottazzi, A. Doni, C. Garlanda and A. Mantovani, An integrated view of humoral innate immunity: Pentraxins as a paradigm,, Annu. Rev. Immunol., 28 (2010), 157.  doi: 10.1146/annurev-immunol-030409-101305.  Google Scholar

[24]

D. J. Brayden, M. A. Jepson and A. W. Baird, Keynote review: Intestinal Peyer's patch M cells and oral vaccine targeting,, Drug Discov. Today, 10 (2005), 1145.  doi: 10.1016/S1359-6446(05)03536-1.  Google Scholar

[25]

S. Brighenti and J. Andersson, Induction and regulation of CD8+ cytolytic T cells in human tuberculosis and HIV infection,, Biochem. Biophys Res. Commun., 396 (2010), 50.  doi: 10.1016/j.bbrc.2010.02.141.  Google Scholar

[26]

I. H. Brown, D. J. Alexander, P. Chakraverty, P. A. Harris and R. J. Manvell, Isolation of an influenza A virus of unusual subtype (H1N7) from pigs in England, and the subsequent experimental transmission from pig to pig,, Vet. Microbiol., 39 (1994), 125.  doi: 10.1016/0378-1135(94)90093-0.  Google Scholar

[27]

I. H. Brown, P. A. Harris, J. W. McCauley and D. J. Alexander, Multiple genetic reassortment of avian and human influenza A viruses in European pigs, resulting in the emergence of an H1N2 virus of novel genotype,, J. Gen. Virol., 79 (Pt 12) (1998), 2947.   Google Scholar

[28]

A. Calmette, Preventive vaccination against tuberculosis with BCG,, Proc. R. Soc. Med., 24 (1931), 1481.   Google Scholar

[29]

L. A. Campbell, C. C. Kuo and J. T. Grayston, Chlamydia pneumoniae and cardiovascular disease,, Emerg. Infect Dis., 4 (1998), 571.  doi: 10.3201/eid0404.980407.  Google Scholar

[30]

M. A. Campbell, H. A. Fitzgerald and P. C. Ronald, Engineering pathogen resistance in crop plants,, Transgenic Res., 11 (2002), 599.  doi: 10.1023/A:1021109509953.  Google Scholar

[31]

M. R. Castrucci, I. Donatelli, L. Sidoli, G. Barigazzi, Y. Kawaoka and R. G. Webster, Genetic reassortment between avian and human influenza A viruses in Italian pigs,, Virology, 193 (1993), 503.  doi: 10.1006/viro.1993.1155.  Google Scholar

[32]

T. M. Chambers, V. S. Hinshaw, Y. Kawaoka, B. C. Easterday and R. G. Webster, Influenza viral infection of swine in the United States 1988-1989,, Arch. Virol., 116 (1991), 261.  doi: 10.1007/BF01319247.  Google Scholar

[33]

Z. Chen, A. Aspelund, G. Kemble and H. Jin, Genetic mapping of the cold-adapted phenotype of B/Ann Arbor/1/66, the master donor virus for live attenuated influenza vaccines (FluMist),, Virology, 345 (2006), 416.  doi: 10.1016/j.virol.2005.10.005.  Google Scholar

[34]

K. M. Citron, BCG vaccination against tuberculosis: International perspectives,, Bmj, 306 (1993), 222.   Google Scholar

[35]

H. F. Clark, P. A. Offit, R. W. Ellis, J. J. Eiden, D. Krah, A. R. Shaw, M. Pichichero, J. J. Treanor, F. E. Borian, L. M. Bell and S. A. Plotkin, The development of multivalent bovine rotavirus (strain WC3) reassortant vaccine for infants,, J. Infect Dis., 174 Suppl 1S (1996), 73.   Google Scholar

[36]

J. Cohen and M. Enserink, Swine flu. after delays, WHO agrees: The 2009 pandemic has begun,, Science, 324 (2009), 1496.  doi: 10.1126/science.324_1496.  Google Scholar

[37]

G. A. Colditz, C. S. Berkey, F. Mosteller, T. F. Brewer, M. E. Wilson, E. Burdick and H. V. Fineberg, The efficacy of bacillus Calmette-Guerin vaccination of newborns and infants in the prevention of tuberculosis: Meta-analyses of the published literature,, Pediatrics, 96 (1995), 29.   Google Scholar

[38]

D. B. Collinge, H. J. Jorgensen, O. S. Lund and M. F. Lyngkjaer, Engineering pathogen resistance in crop plants: Current trends and future prospects,, Annu. Rev. Phytopathol., 48 (2010), 269.  doi: 10.1146/annurev-phyto-073009-114430.  Google Scholar

[39]

G. Corradin and G. del Giudice, "Novel Adjuvants for Vaccines,", Current Medicinal Chemistry Anti-inflammatory and anti-allergy agents 4, (2005).   Google Scholar

[40]

R. Curtiss, 3rd, W. Xin, Y. Li, W. Kong, S. Y. Wanda, B. Gunn and S. Wang, New technologies in using recombinant attenuated Salmonella vaccine vectors,, Crit. Rev. Immunol., 30 (2010), 255.   Google Scholar

[41]

G. De Becker, V. Moulin, B. Pajak, C. Bruck, M. Francotte, C. Thiriart, J. Urbain and M. Moser, The adjuvant monophosphoryl lipid A increases the function of antigen-presenting cells,, Int. Immunol., 12 (2000), 807.  doi: 10.1093/intimm/12.6.807.  Google Scholar

[42]

P. Delves, S. Martin, D. Burton and I. Roitt, "Essential Immunology,", 11th ed. Wiley-Blackwell, (2006).   Google Scholar

[43]

J. Diamond, "Guns, Gems and Steel: The Fates of Human Societies,", 1st ed., (1997).   Google Scholar

[44]

R. Dommett, M. Zilbauer, J. T. George and M. Bajaj-Elliott, Innate immune defence in the human gastrointestinal tract,, Mol. Immunol., 42 (2005), 903.  doi: 10.1016/j.molimm.2004.12.004.  Google Scholar

[45]

M. L. Duran-Reynals, "The Fever Bark Tree: The Pageant of Quinine,", Doubleday, (1946).   Google Scholar

[46]

J. L. Ebersole, M. A. Taubman, D. J. Smith and J. M. Goodson, Gingival crevicular fluid antibody to oral microorganisms. I. Method of collection and analysis of antibody,, J. Periodontal Res., 19 (1984), 124.  doi: 10.1111/j.1600-0765.1984.tb00801.x.  Google Scholar

[47]

P. Ehrlich, Ueber moderne Chemotherapie. Vortrag gehalten in der X,, Tagung der Deutschen Dermatologischen Gesellschaft. Akademische Verlagsgesellschaft m.b.H., (1908).   Google Scholar

[48]

T. C. Elleman, A. A. Azad and C. W. Ward, Neuraminidase gene from the early Asian strain of human influenza virus, A/RI/5-/57 (H2N2),, Nucleic Acids Res., 10 (1982), 7005.  doi: 10.1093/nar/10.21.7005.  Google Scholar

[49]

L. Epstein and S. Bassein, Patterns of pesticide use in California and the implications for strategies for reduction of pesticides,, Annu. Rev. Phytopathol., 41 (2003), 351.  doi: 10.1146/annurev.phyto.41.052002.095612.  Google Scholar

[50]

N. Ferry, M. G. Edwards, J. A. Gatehouse and A. M. Gatehouse, Plant-insect interactions: molecular approaches to insect resistance,, Curr. Opin. Biotechnol., 15 (2004), 155.  doi: 10.1016/j.copbio.2004.01.008.  Google Scholar

[51]

R. H. Ffrench-Constant, P. J. Daborn and G. Le Goff, The genetics and genomics of insecticide resistance,, Trends Genet., 20 (2004), 163.  doi: 10.1016/j.tig.2004.01.003.  Google Scholar

[52]

A. Fleming, On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenza,, Brit. J. Exp. Path., 10 (1929), 226.   Google Scholar

[53]

J. E. Galen and M. M. Levine, Can a 'flawless' live vector vaccine strain be engineered?, Trends Microbiol., 9 (2001), 372.  doi: 10.1016/S0966-842X(01)02096-0.  Google Scholar

[54]

L. Garrett, "The Coming Plague: Newly Emerging Diseases in a World Out of Balance,", 1st ed. Penguin, (1995).   Google Scholar

[55]

R. J. Garten, C. T. Davis, C. A. Russell, B. Shu, S. Lindstrom, A. Balish, W. M. Sessions, X. Xu, E. Skepner, V. Deyde, M. Okomo-Adhiambo, L. Gubareva, J. Barnes, C. B. Smith, S. L. Emery, M. J. Hillman, P. Rivailler, J. Smagala, M. de Graaf, D. F. Burke, Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans,, Science, 325 (2009), 197.   Google Scholar

[1]

Raimund Bürger, Gerardo Chowell, Pep Mulet, Luis M. Villada. Modelling the spatial-temporal progression of the 2009 A/H1N1 influenza pandemic in Chile. Mathematical Biosciences & Engineering, 2016, 13 (1) : 43-65. doi: 10.3934/mbe.2016.13.43

[2]

Olivia Prosper, Omar Saucedo, Doria Thompson, Griselle Torres-Garcia, Xiaohong Wang, Carlos Castillo-Chavez. Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza. Mathematical Biosciences & Engineering, 2011, 8 (1) : 141-170. doi: 10.3934/mbe.2011.8.141

[3]

Arni S.R. Srinivasa Rao. Modeling the rapid spread of avian influenza (H5N1) in India. Mathematical Biosciences & Engineering, 2008, 5 (3) : 523-537. doi: 10.3934/mbe.2008.5.523

[4]

Mudassar Imran, Mohamed Ben-Romdhane, Ali R. Ansari, Helmi Temimi. Numerical study of an influenza epidemic dynamical model with diffusion. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020168

[5]

Sherry Towers, Katia Vogt Geisse, Chia-Chun Tsai, Qing Han, Zhilan Feng. The impact of school closures on pandemic influenza: Assessing potential repercussions using a seasonal SIR model. Mathematical Biosciences & Engineering, 2012, 9 (2) : 413-430. doi: 10.3934/mbe.2012.9.413

[6]

Eunha Shim. Prioritization of delayed vaccination for pandemic influenza. Mathematical Biosciences & Engineering, 2011, 8 (1) : 95-112. doi: 10.3934/mbe.2011.8.95

[7]

Stephen C. Preston, Ralph Saxton. An $H^1$ model for inextensible strings. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2065-2083. doi: 10.3934/dcds.2013.33.2065

[8]

Julien Arino, Chris Bauch, Fred Brauer, S. Michelle Driedger, Amy L. Greer, S.M. Moghadas, Nick J. Pizzi, Beate Sander, Ashleigh Tuite, P. van den Driessche, James Watmough, Jianhong Wu, Ping Yan. Pandemic influenza: Modelling and public health perspectives. Mathematical Biosciences & Engineering, 2011, 8 (1) : 1-20. doi: 10.3934/mbe.2011.8.1

[9]

Marco Arieli Herrera-Valdez, Maytee Cruz-Aponte, Carlos Castillo-Chavez. Multiple outbreaks for the same pandemic: Local transportation and social distancing explain the different "waves" of A-H1N1pdm cases observed in México during 2009. Mathematical Biosciences & Engineering, 2011, 8 (1) : 21-48. doi: 10.3934/mbe.2011.8.21

[10]

Diána H. Knipl, Gergely Röst. Modelling the strategies for age specific vaccination scheduling during influenza pandemic outbreaks. Mathematical Biosciences & Engineering, 2011, 8 (1) : 123-139. doi: 10.3934/mbe.2011.8.123

[11]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[12]

Majid Jaberi-Douraki, Seyed M. Moghadas. Optimal control of vaccination dynamics during an influenza epidemic. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1045-1063. doi: 10.3934/mbe.2014.11.1045

[13]

Dashun Xu, Z. Feng. A metapopulation model with local competitions. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 495-510. doi: 10.3934/dcdsb.2009.12.495

[14]

Karen R. Ríos-Soto, Baojun Song, Carlos Castillo-Chavez. Epidemic spread of influenza viruses: The impact of transient populations on disease dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 199-222. doi: 10.3934/mbe.2011.8.199

[15]

Gerardo Chowell, Catherine E. Ammon, Nicolas W. Hengartner, James M. Hyman. Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland. Mathematical Biosciences & Engineering, 2007, 4 (3) : 457-470. doi: 10.3934/mbe.2007.4.457

[16]

C.M. Elliott, S. A. Smitheman. Analysis of the TV regularization and $H^{-1}$ fidelity model for decomposing animage into cartoon plus texture. Communications on Pure & Applied Analysis, 2007, 6 (4) : 917-936. doi: 10.3934/cpaa.2007.6.917

[17]

Joaquin Riviera, Yi Li. Existence of traveling wave solutions for a nonlocal reaction-diffusion model of influenza a drift. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 157-174. doi: 10.3934/dcdsb.2010.13.157

[18]

M. De Boeck, P. Vandendriessche. On the dual code of points and generators on the Hermitian variety $\mathcal{H}(2n+1,q^{2})$. Advances in Mathematics of Communications, 2014, 8 (3) : 281-296. doi: 10.3934/amc.2014.8.281

[19]

Linfang Liu, Xianlong Fu, Yuncheng You. Pullback attractor in $H^{1}$ for nonautonomous stochastic reaction-diffusion equations on $\mathbb{R}^n$. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3629-3651. doi: 10.3934/dcdsb.2017143

[20]

Frédéric Vanhove. A geometric proof of the upper bound on the size of partial spreads in $H(4n+1,$q2$)$. Advances in Mathematics of Communications, 2011, 5 (2) : 157-160. doi: 10.3934/amc.2011.5.157

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

[Back to Top]