2011, 8(1): 223-238. doi: 10.3934/mbe.2011.8.223

A perspective on the 2009 A/H1N1 influenza pandemic in Mexico

1. 

Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Delegación Coyoacán, México D.F. 04510, Mexico, Mexico

2. 

Mathematical, Computational & Modeling Sciences Center, School of Human Evolution and Social Change, Arizona State University, Box 872402, Tempe, AZ 85287

Received  June 2010 Revised  September 2010 Published  January 2011

In this article, we provide a chronological description of the 2009 H1N1 influenza pandemic in Mexico from the detection of severe respiratory disease among young adults in central Mexico and the identification of the novel swine-origin influenza virus to the response of Mexican public health authorities with the swift implementation of the National Preparedness and Response Plan for Pandemic Influenza. Furthermore, we review some features of the 2009 H1N1 influenza pandemic in Mexico in relation to the devastating 1918-1920 influenza pandemic and discuss opportunities for the application of mathematical modeling in the transmission dynamics of pandemic influenza. The value of historical data in increasing our understanding of past pandemic events is highlighted.
Citation: Rodolfo Acuňa-Soto, Luis Castaňeda-Davila, Gerardo Chowell. A perspective on the 2009 A/H1N1 influenza pandemic in Mexico. Mathematical Biosciences & Engineering, 2011, 8 (1) : 223-238. doi: 10.3934/mbe.2011.8.223
References:
[1]

S. Akira, S. Uematsu and O. Takeuchi, Pathogen recognition and innate immunity,, Cell, 124 (2006), 783.   Google Scholar

[2]

P. Ansstasiou-Fotaki, E. Deligeoroglou and G. Kreatsas, The GARDASIL vaccine can prevent cervical carcinoma caused by human papilloma virus (HPV) (results from our participation and from the study carried out in Greece),, Akush Ginekol (Sofiia), 46 (2007), 17.   Google Scholar

[3]

G. J. Atkins, M. N. Fleeton and B. J. Sheahan, Therapeutic and prophylactic applications of alphavirus vectors,, Expert Rev. Mol. Med., 10 (2008).  doi: 10.1017/S1462399408000859.  Google Scholar

[4]

O. T. Avery and W. F. Goebel, Chemo-immunological studies on conjugated carbohydrate-proteins: II. Immunological specificity of synthetic sugar-protein antigens,, J. Exp. Med., 50 (1929), 533.  doi: 10.1084/jem.50.4.533.  Google Scholar

[5]

R. Barrett, C. W. Kuzawa, T. McDade and G. J. Armelagos, Emerging and re-emerging infectious diseases: The third epidemiologic transition,, Annu. Rev. Anthropol., 27 (1998), 247.  doi: 10.1146/annurev.anthro.27.1.247.  Google Scholar

[6]

C. Barrios, P. Brawand, M. Berney, C. Brandt, P. H. Lambert and C. A. Siegrist, Neonatal and early life immune responses to various forms of vaccine antigens qualitatively differ from adult responses: Predominance of a Th2-biased pattern which persists after adult boosting,, Eur. J. Immunol., 26 (1996), 1489.  doi: 10.1002/eji.1830260713.  Google Scholar

[7]

J. M. Barry, "The Great Influenza: The Story of the Deadliest Pandemic in History,", revised ed. Penguin Books, (2004).   Google Scholar

[8]

J. G. Bartlett, Planning for avian influenza,, Ann. Intern. Med., 145 (2006), 141.   Google Scholar

[9]

G. M. Beards and D. W. Brown, The antigenic diversity of rotaviruses: Significance to epidemiology and vaccine strategies,, Eur. J. Epidemiol., 4 (1988), 1.  doi: 10.1007/BF00152685.  Google Scholar

[10]

A. S. Beare and R. G. Webster, Replication of avian influenza viruses in humans,, Arch. Virol., 119 (1991), 37.  doi: 10.1007/BF01314321.  Google Scholar

[11]

M. Beauregard and M. A. Hefford, Enhancement of essential amino acid contents in crops by genetic engineering and protein design,, Plant Biotechnol. J., 4 (2006), 561.   Google Scholar

[12]

M. W. Beijerinck, A Contagium vivum fluidum as the cause of the mosaic disease of tobacco leaves,, Centralblatt fur Bacteriologie und Parasitenkunde, 5 (1899), 27.   Google Scholar

[13]

E. A. Belongia, S. A. Irving, S. C. Waring, L. A. Coleman, J. K. Meece, M. Vandermause, S. Lindstrom, D. Kempf and D. K. Shay, Clinical characteristics and 30-day outcomes for influenza A 2009 (H1N1), 2008-2009 (H1N1) and 2007-2008 (H3N2) infections,, JAMA, 304 (2010), 1091.   Google Scholar

[14]

R. B. Belshe, Current status of live attenuated influenza virus vaccine in the US,, Virus Res., 103 (2004), 177.  doi: 10.1016/j.virusres.2004.02.031.  Google Scholar

[15]

R. B. Belshe, P. M. Mendelman, J. Treanor, J. King, W. C. Gruber, P. Piedra, D. I. Bernstein, F. G. Hayden, K. Kotloff, K. Zangwill, D. Iacuzio and M. Wolff, The efficacy of live attenuated, cold-adapted, trivalent, intranasal influenzavirus vaccine in children,, N. Engl. J. Med., 338 (1998), 1405.  doi: 10.1056/NEJM199805143382002.  Google Scholar

[16]

R. B. Belshe, K. L. Nichol, S. B. Black, H. Shinefield, J. Cordova, R. Walker, C. Hessel, I. Cho and P. M. Mendelman, Safety, efficacy, and effectiveness of live, attenuated, cold-adapted influenza vaccine in an indicated population aged 5-49 years,, Clin. Infect Dis., 39 (2004), 920.  doi: 10.1086/423001.  Google Scholar

[17]

D. R. Bentley and G. G. Brownlee, Sequence of the N2 neuraminidase from influenza virus A/NT/60/68,, Nucleic Acids Res., 10 (1982), 5033.  doi: 10.1093/nar/10.16.5033.  Google Scholar

[18]

O. G. Berlin, S. M. Novak, R. K. Porschen, E. G. Long, G. N. Stelma and F. W. Schaeffer, Recovery of Cyclospora organisms from patients with prolonged diarrhea,, Clin. Infect Dis., 18 (1994), 606.   Google Scholar

[19]

P. L. Bhalla, Genetic engineering of wheat-current challenges and opportunities,, Trends Biotechnol., 24 (2006), 305.  doi: 10.1016/j.tibtech.2006.04.008.  Google Scholar

[20]

M. E. Bianchi, DAMPs, PAMPs and alarmins: all we need to know about danger,, J. Leukoc Biol., 81 (2007), 1.  doi: 10.1189/jlb.0306164.  Google Scholar

[21]

O. O. Bilukha and N. Rosenstein, Prevention and control of meningococcal disease,, Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm. Rep., 54 (2005), 1.   Google Scholar

[22]

R. Bock, Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming,, Curr. Opin. Biotechnol, 18 (2007), 100.  doi: 10.1016/j.copbio.2006.12.001.  Google Scholar

[23]

B. Bottazzi, A. Doni, C. Garlanda and A. Mantovani, An integrated view of humoral innate immunity: Pentraxins as a paradigm,, Annu. Rev. Immunol., 28 (2010), 157.  doi: 10.1146/annurev-immunol-030409-101305.  Google Scholar

[24]

D. J. Brayden, M. A. Jepson and A. W. Baird, Keynote review: Intestinal Peyer's patch M cells and oral vaccine targeting,, Drug Discov. Today, 10 (2005), 1145.  doi: 10.1016/S1359-6446(05)03536-1.  Google Scholar

[25]

S. Brighenti and J. Andersson, Induction and regulation of CD8+ cytolytic T cells in human tuberculosis and HIV infection,, Biochem. Biophys Res. Commun., 396 (2010), 50.  doi: 10.1016/j.bbrc.2010.02.141.  Google Scholar

[26]

I. H. Brown, D. J. Alexander, P. Chakraverty, P. A. Harris and R. J. Manvell, Isolation of an influenza A virus of unusual subtype (H1N7) from pigs in England, and the subsequent experimental transmission from pig to pig,, Vet. Microbiol., 39 (1994), 125.  doi: 10.1016/0378-1135(94)90093-0.  Google Scholar

[27]

I. H. Brown, P. A. Harris, J. W. McCauley and D. J. Alexander, Multiple genetic reassortment of avian and human influenza A viruses in European pigs, resulting in the emergence of an H1N2 virus of novel genotype,, J. Gen. Virol., 79 (Pt 12) (1998), 2947.   Google Scholar

[28]

A. Calmette, Preventive vaccination against tuberculosis with BCG,, Proc. R. Soc. Med., 24 (1931), 1481.   Google Scholar

[29]

L. A. Campbell, C. C. Kuo and J. T. Grayston, Chlamydia pneumoniae and cardiovascular disease,, Emerg. Infect Dis., 4 (1998), 571.  doi: 10.3201/eid0404.980407.  Google Scholar

[30]

M. A. Campbell, H. A. Fitzgerald and P. C. Ronald, Engineering pathogen resistance in crop plants,, Transgenic Res., 11 (2002), 599.  doi: 10.1023/A:1021109509953.  Google Scholar

[31]

M. R. Castrucci, I. Donatelli, L. Sidoli, G. Barigazzi, Y. Kawaoka and R. G. Webster, Genetic reassortment between avian and human influenza A viruses in Italian pigs,, Virology, 193 (1993), 503.  doi: 10.1006/viro.1993.1155.  Google Scholar

[32]

T. M. Chambers, V. S. Hinshaw, Y. Kawaoka, B. C. Easterday and R. G. Webster, Influenza viral infection of swine in the United States 1988-1989,, Arch. Virol., 116 (1991), 261.  doi: 10.1007/BF01319247.  Google Scholar

[33]

Z. Chen, A. Aspelund, G. Kemble and H. Jin, Genetic mapping of the cold-adapted phenotype of B/Ann Arbor/1/66, the master donor virus for live attenuated influenza vaccines (FluMist),, Virology, 345 (2006), 416.  doi: 10.1016/j.virol.2005.10.005.  Google Scholar

[34]

K. M. Citron, BCG vaccination against tuberculosis: International perspectives,, Bmj, 306 (1993), 222.   Google Scholar

[35]

H. F. Clark, P. A. Offit, R. W. Ellis, J. J. Eiden, D. Krah, A. R. Shaw, M. Pichichero, J. J. Treanor, F. E. Borian, L. M. Bell and S. A. Plotkin, The development of multivalent bovine rotavirus (strain WC3) reassortant vaccine for infants,, J. Infect Dis., 174 Suppl 1S (1996), 73.   Google Scholar

[36]

J. Cohen and M. Enserink, Swine flu. after delays, WHO agrees: The 2009 pandemic has begun,, Science, 324 (2009), 1496.  doi: 10.1126/science.324_1496.  Google Scholar

[37]

G. A. Colditz, C. S. Berkey, F. Mosteller, T. F. Brewer, M. E. Wilson, E. Burdick and H. V. Fineberg, The efficacy of bacillus Calmette-Guerin vaccination of newborns and infants in the prevention of tuberculosis: Meta-analyses of the published literature,, Pediatrics, 96 (1995), 29.   Google Scholar

[38]

D. B. Collinge, H. J. Jorgensen, O. S. Lund and M. F. Lyngkjaer, Engineering pathogen resistance in crop plants: Current trends and future prospects,, Annu. Rev. Phytopathol., 48 (2010), 269.  doi: 10.1146/annurev-phyto-073009-114430.  Google Scholar

[39]

G. Corradin and G. del Giudice, "Novel Adjuvants for Vaccines,", Current Medicinal Chemistry Anti-inflammatory and anti-allergy agents 4, (2005).   Google Scholar

[40]

R. Curtiss, 3rd, W. Xin, Y. Li, W. Kong, S. Y. Wanda, B. Gunn and S. Wang, New technologies in using recombinant attenuated Salmonella vaccine vectors,, Crit. Rev. Immunol., 30 (2010), 255.   Google Scholar

[41]

G. De Becker, V. Moulin, B. Pajak, C. Bruck, M. Francotte, C. Thiriart, J. Urbain and M. Moser, The adjuvant monophosphoryl lipid A increases the function of antigen-presenting cells,, Int. Immunol., 12 (2000), 807.  doi: 10.1093/intimm/12.6.807.  Google Scholar

[42]

P. Delves, S. Martin, D. Burton and I. Roitt, "Essential Immunology,", 11th ed. Wiley-Blackwell, (2006).   Google Scholar

[43]

J. Diamond, "Guns, Gems and Steel: The Fates of Human Societies,", 1st ed., (1997).   Google Scholar

[44]

R. Dommett, M. Zilbauer, J. T. George and M. Bajaj-Elliott, Innate immune defence in the human gastrointestinal tract,, Mol. Immunol., 42 (2005), 903.  doi: 10.1016/j.molimm.2004.12.004.  Google Scholar

[45]

M. L. Duran-Reynals, "The Fever Bark Tree: The Pageant of Quinine,", Doubleday, (1946).   Google Scholar

[46]

J. L. Ebersole, M. A. Taubman, D. J. Smith and J. M. Goodson, Gingival crevicular fluid antibody to oral microorganisms. I. Method of collection and analysis of antibody,, J. Periodontal Res., 19 (1984), 124.  doi: 10.1111/j.1600-0765.1984.tb00801.x.  Google Scholar

[47]

P. Ehrlich, Ueber moderne Chemotherapie. Vortrag gehalten in der X,, Tagung der Deutschen Dermatologischen Gesellschaft. Akademische Verlagsgesellschaft m.b.H., (1908).   Google Scholar

[48]

T. C. Elleman, A. A. Azad and C. W. Ward, Neuraminidase gene from the early Asian strain of human influenza virus, A/RI/5-/57 (H2N2),, Nucleic Acids Res., 10 (1982), 7005.  doi: 10.1093/nar/10.21.7005.  Google Scholar

[49]

L. Epstein and S. Bassein, Patterns of pesticide use in California and the implications for strategies for reduction of pesticides,, Annu. Rev. Phytopathol., 41 (2003), 351.  doi: 10.1146/annurev.phyto.41.052002.095612.  Google Scholar

[50]

N. Ferry, M. G. Edwards, J. A. Gatehouse and A. M. Gatehouse, Plant-insect interactions: molecular approaches to insect resistance,, Curr. Opin. Biotechnol., 15 (2004), 155.  doi: 10.1016/j.copbio.2004.01.008.  Google Scholar

[51]

R. H. Ffrench-Constant, P. J. Daborn and G. Le Goff, The genetics and genomics of insecticide resistance,, Trends Genet., 20 (2004), 163.  doi: 10.1016/j.tig.2004.01.003.  Google Scholar

[52]

A. Fleming, On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenza,, Brit. J. Exp. Path., 10 (1929), 226.   Google Scholar

[53]

J. E. Galen and M. M. Levine, Can a 'flawless' live vector vaccine strain be engineered?, Trends Microbiol., 9 (2001), 372.  doi: 10.1016/S0966-842X(01)02096-0.  Google Scholar

[54]

L. Garrett, "The Coming Plague: Newly Emerging Diseases in a World Out of Balance,", 1st ed. Penguin, (1995).   Google Scholar

[55]

R. J. Garten, C. T. Davis, C. A. Russell, B. Shu, S. Lindstrom, A. Balish, W. M. Sessions, X. Xu, E. Skepner, V. Deyde, M. Okomo-Adhiambo, L. Gubareva, J. Barnes, C. B. Smith, S. L. Emery, M. J. Hillman, P. Rivailler, J. Smagala, M. de Graaf, D. F. Burke, Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans,, Science, 325 (2009), 197.   Google Scholar

show all references

References:
[1]

S. Akira, S. Uematsu and O. Takeuchi, Pathogen recognition and innate immunity,, Cell, 124 (2006), 783.   Google Scholar

[2]

P. Ansstasiou-Fotaki, E. Deligeoroglou and G. Kreatsas, The GARDASIL vaccine can prevent cervical carcinoma caused by human papilloma virus (HPV) (results from our participation and from the study carried out in Greece),, Akush Ginekol (Sofiia), 46 (2007), 17.   Google Scholar

[3]

G. J. Atkins, M. N. Fleeton and B. J. Sheahan, Therapeutic and prophylactic applications of alphavirus vectors,, Expert Rev. Mol. Med., 10 (2008).  doi: 10.1017/S1462399408000859.  Google Scholar

[4]

O. T. Avery and W. F. Goebel, Chemo-immunological studies on conjugated carbohydrate-proteins: II. Immunological specificity of synthetic sugar-protein antigens,, J. Exp. Med., 50 (1929), 533.  doi: 10.1084/jem.50.4.533.  Google Scholar

[5]

R. Barrett, C. W. Kuzawa, T. McDade and G. J. Armelagos, Emerging and re-emerging infectious diseases: The third epidemiologic transition,, Annu. Rev. Anthropol., 27 (1998), 247.  doi: 10.1146/annurev.anthro.27.1.247.  Google Scholar

[6]

C. Barrios, P. Brawand, M. Berney, C. Brandt, P. H. Lambert and C. A. Siegrist, Neonatal and early life immune responses to various forms of vaccine antigens qualitatively differ from adult responses: Predominance of a Th2-biased pattern which persists after adult boosting,, Eur. J. Immunol., 26 (1996), 1489.  doi: 10.1002/eji.1830260713.  Google Scholar

[7]

J. M. Barry, "The Great Influenza: The Story of the Deadliest Pandemic in History,", revised ed. Penguin Books, (2004).   Google Scholar

[8]

J. G. Bartlett, Planning for avian influenza,, Ann. Intern. Med., 145 (2006), 141.   Google Scholar

[9]

G. M. Beards and D. W. Brown, The antigenic diversity of rotaviruses: Significance to epidemiology and vaccine strategies,, Eur. J. Epidemiol., 4 (1988), 1.  doi: 10.1007/BF00152685.  Google Scholar

[10]

A. S. Beare and R. G. Webster, Replication of avian influenza viruses in humans,, Arch. Virol., 119 (1991), 37.  doi: 10.1007/BF01314321.  Google Scholar

[11]

M. Beauregard and M. A. Hefford, Enhancement of essential amino acid contents in crops by genetic engineering and protein design,, Plant Biotechnol. J., 4 (2006), 561.   Google Scholar

[12]

M. W. Beijerinck, A Contagium vivum fluidum as the cause of the mosaic disease of tobacco leaves,, Centralblatt fur Bacteriologie und Parasitenkunde, 5 (1899), 27.   Google Scholar

[13]

E. A. Belongia, S. A. Irving, S. C. Waring, L. A. Coleman, J. K. Meece, M. Vandermause, S. Lindstrom, D. Kempf and D. K. Shay, Clinical characteristics and 30-day outcomes for influenza A 2009 (H1N1), 2008-2009 (H1N1) and 2007-2008 (H3N2) infections,, JAMA, 304 (2010), 1091.   Google Scholar

[14]

R. B. Belshe, Current status of live attenuated influenza virus vaccine in the US,, Virus Res., 103 (2004), 177.  doi: 10.1016/j.virusres.2004.02.031.  Google Scholar

[15]

R. B. Belshe, P. M. Mendelman, J. Treanor, J. King, W. C. Gruber, P. Piedra, D. I. Bernstein, F. G. Hayden, K. Kotloff, K. Zangwill, D. Iacuzio and M. Wolff, The efficacy of live attenuated, cold-adapted, trivalent, intranasal influenzavirus vaccine in children,, N. Engl. J. Med., 338 (1998), 1405.  doi: 10.1056/NEJM199805143382002.  Google Scholar

[16]

R. B. Belshe, K. L. Nichol, S. B. Black, H. Shinefield, J. Cordova, R. Walker, C. Hessel, I. Cho and P. M. Mendelman, Safety, efficacy, and effectiveness of live, attenuated, cold-adapted influenza vaccine in an indicated population aged 5-49 years,, Clin. Infect Dis., 39 (2004), 920.  doi: 10.1086/423001.  Google Scholar

[17]

D. R. Bentley and G. G. Brownlee, Sequence of the N2 neuraminidase from influenza virus A/NT/60/68,, Nucleic Acids Res., 10 (1982), 5033.  doi: 10.1093/nar/10.16.5033.  Google Scholar

[18]

O. G. Berlin, S. M. Novak, R. K. Porschen, E. G. Long, G. N. Stelma and F. W. Schaeffer, Recovery of Cyclospora organisms from patients with prolonged diarrhea,, Clin. Infect Dis., 18 (1994), 606.   Google Scholar

[19]

P. L. Bhalla, Genetic engineering of wheat-current challenges and opportunities,, Trends Biotechnol., 24 (2006), 305.  doi: 10.1016/j.tibtech.2006.04.008.  Google Scholar

[20]

M. E. Bianchi, DAMPs, PAMPs and alarmins: all we need to know about danger,, J. Leukoc Biol., 81 (2007), 1.  doi: 10.1189/jlb.0306164.  Google Scholar

[21]

O. O. Bilukha and N. Rosenstein, Prevention and control of meningococcal disease,, Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm. Rep., 54 (2005), 1.   Google Scholar

[22]

R. Bock, Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming,, Curr. Opin. Biotechnol, 18 (2007), 100.  doi: 10.1016/j.copbio.2006.12.001.  Google Scholar

[23]

B. Bottazzi, A. Doni, C. Garlanda and A. Mantovani, An integrated view of humoral innate immunity: Pentraxins as a paradigm,, Annu. Rev. Immunol., 28 (2010), 157.  doi: 10.1146/annurev-immunol-030409-101305.  Google Scholar

[24]

D. J. Brayden, M. A. Jepson and A. W. Baird, Keynote review: Intestinal Peyer's patch M cells and oral vaccine targeting,, Drug Discov. Today, 10 (2005), 1145.  doi: 10.1016/S1359-6446(05)03536-1.  Google Scholar

[25]

S. Brighenti and J. Andersson, Induction and regulation of CD8+ cytolytic T cells in human tuberculosis and HIV infection,, Biochem. Biophys Res. Commun., 396 (2010), 50.  doi: 10.1016/j.bbrc.2010.02.141.  Google Scholar

[26]

I. H. Brown, D. J. Alexander, P. Chakraverty, P. A. Harris and R. J. Manvell, Isolation of an influenza A virus of unusual subtype (H1N7) from pigs in England, and the subsequent experimental transmission from pig to pig,, Vet. Microbiol., 39 (1994), 125.  doi: 10.1016/0378-1135(94)90093-0.  Google Scholar

[27]

I. H. Brown, P. A. Harris, J. W. McCauley and D. J. Alexander, Multiple genetic reassortment of avian and human influenza A viruses in European pigs, resulting in the emergence of an H1N2 virus of novel genotype,, J. Gen. Virol., 79 (Pt 12) (1998), 2947.   Google Scholar

[28]

A. Calmette, Preventive vaccination against tuberculosis with BCG,, Proc. R. Soc. Med., 24 (1931), 1481.   Google Scholar

[29]

L. A. Campbell, C. C. Kuo and J. T. Grayston, Chlamydia pneumoniae and cardiovascular disease,, Emerg. Infect Dis., 4 (1998), 571.  doi: 10.3201/eid0404.980407.  Google Scholar

[30]

M. A. Campbell, H. A. Fitzgerald and P. C. Ronald, Engineering pathogen resistance in crop plants,, Transgenic Res., 11 (2002), 599.  doi: 10.1023/A:1021109509953.  Google Scholar

[31]

M. R. Castrucci, I. Donatelli, L. Sidoli, G. Barigazzi, Y. Kawaoka and R. G. Webster, Genetic reassortment between avian and human influenza A viruses in Italian pigs,, Virology, 193 (1993), 503.  doi: 10.1006/viro.1993.1155.  Google Scholar

[32]

T. M. Chambers, V. S. Hinshaw, Y. Kawaoka, B. C. Easterday and R. G. Webster, Influenza viral infection of swine in the United States 1988-1989,, Arch. Virol., 116 (1991), 261.  doi: 10.1007/BF01319247.  Google Scholar

[33]

Z. Chen, A. Aspelund, G. Kemble and H. Jin, Genetic mapping of the cold-adapted phenotype of B/Ann Arbor/1/66, the master donor virus for live attenuated influenza vaccines (FluMist),, Virology, 345 (2006), 416.  doi: 10.1016/j.virol.2005.10.005.  Google Scholar

[34]

K. M. Citron, BCG vaccination against tuberculosis: International perspectives,, Bmj, 306 (1993), 222.   Google Scholar

[35]

H. F. Clark, P. A. Offit, R. W. Ellis, J. J. Eiden, D. Krah, A. R. Shaw, M. Pichichero, J. J. Treanor, F. E. Borian, L. M. Bell and S. A. Plotkin, The development of multivalent bovine rotavirus (strain WC3) reassortant vaccine for infants,, J. Infect Dis., 174 Suppl 1S (1996), 73.   Google Scholar

[36]

J. Cohen and M. Enserink, Swine flu. after delays, WHO agrees: The 2009 pandemic has begun,, Science, 324 (2009), 1496.  doi: 10.1126/science.324_1496.  Google Scholar

[37]

G. A. Colditz, C. S. Berkey, F. Mosteller, T. F. Brewer, M. E. Wilson, E. Burdick and H. V. Fineberg, The efficacy of bacillus Calmette-Guerin vaccination of newborns and infants in the prevention of tuberculosis: Meta-analyses of the published literature,, Pediatrics, 96 (1995), 29.   Google Scholar

[38]

D. B. Collinge, H. J. Jorgensen, O. S. Lund and M. F. Lyngkjaer, Engineering pathogen resistance in crop plants: Current trends and future prospects,, Annu. Rev. Phytopathol., 48 (2010), 269.  doi: 10.1146/annurev-phyto-073009-114430.  Google Scholar

[39]

G. Corradin and G. del Giudice, "Novel Adjuvants for Vaccines,", Current Medicinal Chemistry Anti-inflammatory and anti-allergy agents 4, (2005).   Google Scholar

[40]

R. Curtiss, 3rd, W. Xin, Y. Li, W. Kong, S. Y. Wanda, B. Gunn and S. Wang, New technologies in using recombinant attenuated Salmonella vaccine vectors,, Crit. Rev. Immunol., 30 (2010), 255.   Google Scholar

[41]

G. De Becker, V. Moulin, B. Pajak, C. Bruck, M. Francotte, C. Thiriart, J. Urbain and M. Moser, The adjuvant monophosphoryl lipid A increases the function of antigen-presenting cells,, Int. Immunol., 12 (2000), 807.  doi: 10.1093/intimm/12.6.807.  Google Scholar

[42]

P. Delves, S. Martin, D. Burton and I. Roitt, "Essential Immunology,", 11th ed. Wiley-Blackwell, (2006).   Google Scholar

[43]

J. Diamond, "Guns, Gems and Steel: The Fates of Human Societies,", 1st ed., (1997).   Google Scholar

[44]

R. Dommett, M. Zilbauer, J. T. George and M. Bajaj-Elliott, Innate immune defence in the human gastrointestinal tract,, Mol. Immunol., 42 (2005), 903.  doi: 10.1016/j.molimm.2004.12.004.  Google Scholar

[45]

M. L. Duran-Reynals, "The Fever Bark Tree: The Pageant of Quinine,", Doubleday, (1946).   Google Scholar

[46]

J. L. Ebersole, M. A. Taubman, D. J. Smith and J. M. Goodson, Gingival crevicular fluid antibody to oral microorganisms. I. Method of collection and analysis of antibody,, J. Periodontal Res., 19 (1984), 124.  doi: 10.1111/j.1600-0765.1984.tb00801.x.  Google Scholar

[47]

P. Ehrlich, Ueber moderne Chemotherapie. Vortrag gehalten in der X,, Tagung der Deutschen Dermatologischen Gesellschaft. Akademische Verlagsgesellschaft m.b.H., (1908).   Google Scholar

[48]

T. C. Elleman, A. A. Azad and C. W. Ward, Neuraminidase gene from the early Asian strain of human influenza virus, A/RI/5-/57 (H2N2),, Nucleic Acids Res., 10 (1982), 7005.  doi: 10.1093/nar/10.21.7005.  Google Scholar

[49]

L. Epstein and S. Bassein, Patterns of pesticide use in California and the implications for strategies for reduction of pesticides,, Annu. Rev. Phytopathol., 41 (2003), 351.  doi: 10.1146/annurev.phyto.41.052002.095612.  Google Scholar

[50]

N. Ferry, M. G. Edwards, J. A. Gatehouse and A. M. Gatehouse, Plant-insect interactions: molecular approaches to insect resistance,, Curr. Opin. Biotechnol., 15 (2004), 155.  doi: 10.1016/j.copbio.2004.01.008.  Google Scholar

[51]

R. H. Ffrench-Constant, P. J. Daborn and G. Le Goff, The genetics and genomics of insecticide resistance,, Trends Genet., 20 (2004), 163.  doi: 10.1016/j.tig.2004.01.003.  Google Scholar

[52]

A. Fleming, On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenza,, Brit. J. Exp. Path., 10 (1929), 226.   Google Scholar

[53]

J. E. Galen and M. M. Levine, Can a 'flawless' live vector vaccine strain be engineered?, Trends Microbiol., 9 (2001), 372.  doi: 10.1016/S0966-842X(01)02096-0.  Google Scholar

[54]

L. Garrett, "The Coming Plague: Newly Emerging Diseases in a World Out of Balance,", 1st ed. Penguin, (1995).   Google Scholar

[55]

R. J. Garten, C. T. Davis, C. A. Russell, B. Shu, S. Lindstrom, A. Balish, W. M. Sessions, X. Xu, E. Skepner, V. Deyde, M. Okomo-Adhiambo, L. Gubareva, J. Barnes, C. B. Smith, S. L. Emery, M. J. Hillman, P. Rivailler, J. Smagala, M. de Graaf, D. F. Burke, Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans,, Science, 325 (2009), 197.   Google Scholar

[1]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[2]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[3]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[4]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[5]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[6]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[7]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[8]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[9]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[10]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[11]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[12]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[13]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[14]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[15]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[16]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[17]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[18]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[19]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[20]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (2)

[Back to Top]