2011, 8(2): 263-277. doi: 10.3934/mbe.2011.8.263

Modeling and simulation of some cell dispersion problems by a nonparametric method

1. 

ICAM, WWU Münster, Einsteinstr. 62, 48149 Münster, Germany, Germany

Received  February 2010 Revised  December 2010 Published  April 2011

Starting from the classical descriptions of cell motion we propose some ways to enhance the realism of modeling and to account for interesting features like allowing for a random switching between biased and unbiased motion or avoiding a set of obstacles. For this complex behavior of the cell population we propose new models and also provide a way to numerically assess the macroscopic densities of interest upon using a nonparametric estimation technique. Up to our knowledge, this is the only method able to numerically handle the entire complexity of such settings.
Citation: Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263
References:
[1]

W. Alt, Biased random walk models for chemotaxis and related diffusion approximations, Journal of Mathematical Biology, 9 (1980), 147-177. doi: 10.1007/BF00275919.

[2]

S. Asmussen and P. W. Glynn, "Stochastic Simulation. Algorithms and Analysis," Springer, 2007.

[3]

T. Cacoullos, Estimation of a multivariate density, Annals of the Institute of Statistical Mathematics, 18 (1966), 179-189. doi: 10.1007/BF02869528.

[4]

F. A. C. C. Chalub, Y. Dolak-Struss, P. Markowich, D. Oelz, C. Schmeiser and A. Soreff, Model hierarchies for cell aggregation by chemotaxis, Mathematical Models and Methods in the Applied Sciences, 16 (2006), 1173-1197. doi: 10.1142/S0218202506001509.

[5]

F. A. C. C. Chalub, P. Markowich, B. Perthame and C. Schmeiser, Kinetic models for chemotaxis and their drift-diffusion limits, Monatshefte für Mathematik, 142 (2004), 123-141.

[6]

E. A. Codling and N. A. Hill, Calculating spatial statistics for velocity jump processes with experimentally observed reorientation parameters, Journal of Mathematical Biology, 51 (2005), 527-556. doi: 10.1007/s00285-005-0317-7.

[7]

A. Czirók, K. Schlett, E. Madarász and T. Vicsek, Exponential distribution of locomotion activity in cell cultures, Physical Review Letters, 81 (1998), 3038-3041. doi: 10.1103/PhysRevLett.81.3038.

[8]

P. Deheuvels, Estimation non paramétrique de la densité par histogrames généralisés (II), Publications de l'Institut Statistique de l'Université de Paris, 22 (1977), 1-23.

[9]

L. Devroye and L. Györfi, "Nonparametric Density Estimation: The $L_1$ View," John Wiley, New York 1985.

[10]

L. Devroye, Universal smoothing factor selection in density estimation: Theory and practice, Test, 6 (1997), 223-320. doi: 10.1007/BF02564701.

[11]

R. Erban and H. G. Othmer, From signal transduction to spatial pattern formation in E. Coli: A paradigm for multiscale modeling in biology, Multiscale Modeling and Simulation, 3 (2005), 362-394. doi: 10.1137/040603565.

[12]

F. Filbet, P. Laurençot and B. Perthame, Derivation of hyperbolic models for chemosensitive movement, Journal of Mathematical Biology, 50 (2005), 189-207. doi: 10.1007/s00285-004-0286-2.

[13]

C. W. Gear, J. Li and I. G. Kevrekidis, The gap-tooth method in particle simulations, Physics Letters A, 316 (2003), 190-195. doi: 10.1016/j.physleta.2003.07.004.

[14]

T. Hillen, "Transport Equations and Chemosensitive Movement," Habilitation Thesis, University of Tübingen, 2001.

[15]

T. Hillen, Hyperbolic models for chemosensitive movement, Mathematical Models and Methods in the Applied Sciences, 12 (2002), 1-28. doi: 10.1142/S0218202502002008.

[16]

T. Hillen, Transport equations with resting phases, European Journal of Applied Mathematics, 14 (2003), 613-636. doi: 10.1017/S0956792503005291.

[17]

T. Hillen and H. G. Othmer, The diffusion limit of transport equations derived from velocity-jump processes, SIAM Journal of Applied Mathematics, 61 (2000), 751-775. doi: 10.1137/S0036139999358167.

[18]

J. Kelkel and C. Surulescu, A multiscale approach to cell migration in tissue networks, preprint IANS, University of Stuttgart, 2010, submitted.

[19]

L. Holmström and J. Klemelä, Asymptotic bounds for the expected $L^1$ error of a multivariate kernel density estimator, Journal of Multivariate Analysis, 42 (1992), 245-266. doi: 10.1016/0047-259X(92)90046-I.

[20]

P. E. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations," Springer, 2000.

[21]

K. V. Mardia, P. E. Jupp, "Directional Statistics," Wiley, 2000. doi: 10.1016/0167-7152(88)90050-8.

[22]

J. S. Marron and D. Nolan, Canonical kernels for density estimation, Statistics and Probability Letters, 7 (1988), 195-199. doi: 10.1214/aos/1176348653.

[23]

J. S. Marron and M. P. Wand, Exact mean integrated squared error, Annals of Statistics, 20 (1992), 712-736. doi: 10.1007/BF00277392.

[24]

D. Ölz, C. Schmeiser and A. Soreff, Multistep navigation of leukocytes: A stochastic model with memory effects, preprint, TU Vienna, 2004. doi: 10.1137/S0036139900382772.

[25]

H. G. Othmer, S. R. Dunbar and W. Alt, Models of dispersal in biological systems, Journal of Mathematical Biology, 26 (1988), 263-298.

[26]

H. G. Othmer and T. Hillen, The diffusion limit of transport equations II: Chemotaxis equations, SIAM Journal of Applied Mathematics, 62 (2002), 1222-1250.

[27]

A. R. Pagan and A. Ullah, "Nonparametric Econometrics," Cambridge University Press, 1999.

[28]

D. W. Scott, "Multivariate Density Estimation: Theory, Practice and Visualization," John Wiley & Sons, 1992.

[29]

B. W. Silverman, "Density Estimation for Statistics and Data Analysis," Chapman & Hall, 1986.

[30]

D. W. Stroock, Some stochastic processes which arise from a model of the motion of a bacterium, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 28 (1974), 305-315.

[31]

C. Surulescu and N. Surulescu, A nonparametric approach to cell dispersal,, preprint IANS 14/2007, (). 

[32]

C. Surulescu and N. Surulescu, A nonparametric approach to cell dispersal, International Journal of Biomathematics and Biostatistics, 1 (2010), 109-128.

[33]

C. Surulescu and N. Surulescu, On two approahes to a multiscale system modeling bacterial chemotaxis,, preprint IANS, (). 

[34]

H. Takagi, M. J. Sato, T. Yanagida and M. Ueda, Functional analysis of spontaneous cell movement under different physiological conditions, PLoS ONE, 3 (2008), e2648. doi: 10.1371/journal.pone.0002648.

[35]

A. Upadhyaya, J. P. Rieu, J. A. Glazier and Y. Sawada, Anomalous diffusion and non-Gaussian velocity distribution of Hydra cells in cellular aggregates, Physica A: Statistical Mechanics and its Applications, 293 (2001), 549-558.

[36]

P. Vieu, Quadratic errors for nonparametric estimates under dependence, Journal of Multivariate Analysis, 39 (1991), 324-347. doi: 10.1016/0047-259X(91)90105-B.

show all references

References:
[1]

W. Alt, Biased random walk models for chemotaxis and related diffusion approximations, Journal of Mathematical Biology, 9 (1980), 147-177. doi: 10.1007/BF00275919.

[2]

S. Asmussen and P. W. Glynn, "Stochastic Simulation. Algorithms and Analysis," Springer, 2007.

[3]

T. Cacoullos, Estimation of a multivariate density, Annals of the Institute of Statistical Mathematics, 18 (1966), 179-189. doi: 10.1007/BF02869528.

[4]

F. A. C. C. Chalub, Y. Dolak-Struss, P. Markowich, D. Oelz, C. Schmeiser and A. Soreff, Model hierarchies for cell aggregation by chemotaxis, Mathematical Models and Methods in the Applied Sciences, 16 (2006), 1173-1197. doi: 10.1142/S0218202506001509.

[5]

F. A. C. C. Chalub, P. Markowich, B. Perthame and C. Schmeiser, Kinetic models for chemotaxis and their drift-diffusion limits, Monatshefte für Mathematik, 142 (2004), 123-141.

[6]

E. A. Codling and N. A. Hill, Calculating spatial statistics for velocity jump processes with experimentally observed reorientation parameters, Journal of Mathematical Biology, 51 (2005), 527-556. doi: 10.1007/s00285-005-0317-7.

[7]

A. Czirók, K. Schlett, E. Madarász and T. Vicsek, Exponential distribution of locomotion activity in cell cultures, Physical Review Letters, 81 (1998), 3038-3041. doi: 10.1103/PhysRevLett.81.3038.

[8]

P. Deheuvels, Estimation non paramétrique de la densité par histogrames généralisés (II), Publications de l'Institut Statistique de l'Université de Paris, 22 (1977), 1-23.

[9]

L. Devroye and L. Györfi, "Nonparametric Density Estimation: The $L_1$ View," John Wiley, New York 1985.

[10]

L. Devroye, Universal smoothing factor selection in density estimation: Theory and practice, Test, 6 (1997), 223-320. doi: 10.1007/BF02564701.

[11]

R. Erban and H. G. Othmer, From signal transduction to spatial pattern formation in E. Coli: A paradigm for multiscale modeling in biology, Multiscale Modeling and Simulation, 3 (2005), 362-394. doi: 10.1137/040603565.

[12]

F. Filbet, P. Laurençot and B. Perthame, Derivation of hyperbolic models for chemosensitive movement, Journal of Mathematical Biology, 50 (2005), 189-207. doi: 10.1007/s00285-004-0286-2.

[13]

C. W. Gear, J. Li and I. G. Kevrekidis, The gap-tooth method in particle simulations, Physics Letters A, 316 (2003), 190-195. doi: 10.1016/j.physleta.2003.07.004.

[14]

T. Hillen, "Transport Equations and Chemosensitive Movement," Habilitation Thesis, University of Tübingen, 2001.

[15]

T. Hillen, Hyperbolic models for chemosensitive movement, Mathematical Models and Methods in the Applied Sciences, 12 (2002), 1-28. doi: 10.1142/S0218202502002008.

[16]

T. Hillen, Transport equations with resting phases, European Journal of Applied Mathematics, 14 (2003), 613-636. doi: 10.1017/S0956792503005291.

[17]

T. Hillen and H. G. Othmer, The diffusion limit of transport equations derived from velocity-jump processes, SIAM Journal of Applied Mathematics, 61 (2000), 751-775. doi: 10.1137/S0036139999358167.

[18]

J. Kelkel and C. Surulescu, A multiscale approach to cell migration in tissue networks, preprint IANS, University of Stuttgart, 2010, submitted.

[19]

L. Holmström and J. Klemelä, Asymptotic bounds for the expected $L^1$ error of a multivariate kernel density estimator, Journal of Multivariate Analysis, 42 (1992), 245-266. doi: 10.1016/0047-259X(92)90046-I.

[20]

P. E. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations," Springer, 2000.

[21]

K. V. Mardia, P. E. Jupp, "Directional Statistics," Wiley, 2000. doi: 10.1016/0167-7152(88)90050-8.

[22]

J. S. Marron and D. Nolan, Canonical kernels for density estimation, Statistics and Probability Letters, 7 (1988), 195-199. doi: 10.1214/aos/1176348653.

[23]

J. S. Marron and M. P. Wand, Exact mean integrated squared error, Annals of Statistics, 20 (1992), 712-736. doi: 10.1007/BF00277392.

[24]

D. Ölz, C. Schmeiser and A. Soreff, Multistep navigation of leukocytes: A stochastic model with memory effects, preprint, TU Vienna, 2004. doi: 10.1137/S0036139900382772.

[25]

H. G. Othmer, S. R. Dunbar and W. Alt, Models of dispersal in biological systems, Journal of Mathematical Biology, 26 (1988), 263-298.

[26]

H. G. Othmer and T. Hillen, The diffusion limit of transport equations II: Chemotaxis equations, SIAM Journal of Applied Mathematics, 62 (2002), 1222-1250.

[27]

A. R. Pagan and A. Ullah, "Nonparametric Econometrics," Cambridge University Press, 1999.

[28]

D. W. Scott, "Multivariate Density Estimation: Theory, Practice and Visualization," John Wiley & Sons, 1992.

[29]

B. W. Silverman, "Density Estimation for Statistics and Data Analysis," Chapman & Hall, 1986.

[30]

D. W. Stroock, Some stochastic processes which arise from a model of the motion of a bacterium, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 28 (1974), 305-315.

[31]

C. Surulescu and N. Surulescu, A nonparametric approach to cell dispersal,, preprint IANS 14/2007, (). 

[32]

C. Surulescu and N. Surulescu, A nonparametric approach to cell dispersal, International Journal of Biomathematics and Biostatistics, 1 (2010), 109-128.

[33]

C. Surulescu and N. Surulescu, On two approahes to a multiscale system modeling bacterial chemotaxis,, preprint IANS, (). 

[34]

H. Takagi, M. J. Sato, T. Yanagida and M. Ueda, Functional analysis of spontaneous cell movement under different physiological conditions, PLoS ONE, 3 (2008), e2648. doi: 10.1371/journal.pone.0002648.

[35]

A. Upadhyaya, J. P. Rieu, J. A. Glazier and Y. Sawada, Anomalous diffusion and non-Gaussian velocity distribution of Hydra cells in cellular aggregates, Physica A: Statistical Mechanics and its Applications, 293 (2001), 549-558.

[36]

P. Vieu, Quadratic errors for nonparametric estimates under dependence, Journal of Multivariate Analysis, 39 (1991), 324-347. doi: 10.1016/0047-259X(91)90105-B.

[1]

Radek Erban, Jan Haskovec. From individual to collective behaviour of coupled velocity jump processes: A locust example. Kinetic and Related Models, 2012, 5 (4) : 817-842. doi: 10.3934/krm.2012.5.817

[2]

A. Chauviere, T. Hillen, L. Preziosi. Modeling cell movement in anisotropic and heterogeneous network tissues. Networks and Heterogeneous Media, 2007, 2 (2) : 333-357. doi: 10.3934/nhm.2007.2.333

[3]

Russell Betteridge, Markus R. Owen, H.M. Byrne, Tomás Alarcón, Philip K. Maini. The impact of cell crowding and active cell movement on vascular tumour growth. Networks and Heterogeneous Media, 2006, 1 (4) : 515-535. doi: 10.3934/nhm.2006.1.515

[4]

Thomas Hillen, Peter Hinow, Zhi-An Wang. Mathematical analysis of a kinetic model for cell movement in network tissues. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1055-1080. doi: 10.3934/dcdsb.2010.14.1055

[5]

Xian Chen, Zhi-Ming Ma. A transformation of Markov jump processes and applications in genetic study. Discrete and Continuous Dynamical Systems, 2014, 34 (12) : 5061-5084. doi: 10.3934/dcds.2014.34.5061

[6]

Kunyang Song, Yuping Song, Hanchao Wang. Threshold reweighted Nadaraya–Watson estimation of jump-diffusion models. Probability, Uncertainty and Quantitative Risk, 2022, 7 (1) : 31-44. doi: 10.3934/puqr.2022003

[7]

Pierre Degond, Silke Henkes, Hui Yu. Self-organized hydrodynamics with density-dependent velocity. Kinetic and Related Models, 2017, 10 (1) : 193-213. doi: 10.3934/krm.2017008

[8]

Qiang Du, Zhan Huang, Richard B. Lehoucq. Nonlocal convection-diffusion volume-constrained problems and jump processes. Discrete and Continuous Dynamical Systems - B, 2014, 19 (2) : 373-389. doi: 10.3934/dcdsb.2014.19.373

[9]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial and Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[10]

Kai Zhang, Xiaoqi Yang, Kok Lay Teo. A power penalty approach to american option pricing with jump diffusion processes. Journal of Industrial and Management Optimization, 2008, 4 (4) : 783-799. doi: 10.3934/jimo.2008.4.783

[11]

Giovanni Colombo, Paolo Gidoni, Emilio Vilches. Stabilization of periodic sweeping processes and asymptotic average velocity for soft locomotors with dry friction. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 737-757. doi: 10.3934/dcds.2021135

[12]

Tianyuan Xu, Shanming Ji, Chunhua Jin, Ming Mei, Jingxue Yin. Early and late stage profiles for a chemotaxis model with density-dependent jump probability. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1345-1385. doi: 10.3934/mbe.2018062

[13]

Chandan Pal, Somnath Pradhan. Zero-sum games for pure jump processes with risk-sensitive discounted cost criteria. Journal of Dynamics and Games, 2022, 9 (1) : 13-25. doi: 10.3934/jdg.2021020

[14]

Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1689-1707. doi: 10.3934/jimo.2021039

[15]

Matthieu Canaud, Lyudmila Mihaylova, Jacques Sau, Nour-Eddin El Faouzi. Probability hypothesis density filtering for real-time traffic state estimation and prediction. Networks and Heterogeneous Media, 2013, 8 (3) : 825-842. doi: 10.3934/nhm.2013.8.825

[16]

Kaikai Cao, Youming Liu. Uncompactly supported density estimation with $ L^{1} $ risk. Communications on Pure and Applied Analysis, 2020, 19 (8) : 4007-4022. doi: 10.3934/cpaa.2020177

[17]

Nadia Loy, Luigi Preziosi. Stability of a non-local kinetic model for cell migration with density dependent orientation bias. Kinetic and Related Models, 2020, 13 (5) : 1007-1027. doi: 10.3934/krm.2020035

[18]

Jian-Guo Liu, Min Tang, Li Wang, Zhennan Zhou. Analysis and computation of some tumor growth models with nutrient: From cell density models to free boundary dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3011-3035. doi: 10.3934/dcdsb.2018297

[19]

E.V. Presnov, Z. Agur. The Role Of Time Delays, Slow Processes And Chaos In Modulating The Cell-Cycle Clock. Mathematical Biosciences & Engineering, 2005, 2 (3) : 625-642. doi: 10.3934/mbe.2005.2.625

[20]

Dor Elimelech. Permutations with restricted movement. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4319-4349. doi: 10.3934/dcds.2021038

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]