• Previous Article
    Tumor cells proliferation and migration under the influence of their microenvironment
  • MBE Home
  • This Issue
  • Next Article
    A model of competing saturable kinetic processes with application to the pharmacokinetics of the anticancer drug paclitaxel
2011, 8(2): 355-369. doi: 10.3934/mbe.2011.8.355

Robustness of optimal controls for a class of mathematical models for tumor anti-angiogenesis

1. 

Dept. of Electrical and Systems Engineering, Washington University, St. Louis, Missouri, 63130-4899

2. 

Dept. of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, Illinois, 62026-1653

3. 

Dept. of Mathematics and Statistic, Southern Illinois University Edwardsville, Edwardsville, Illinois, 62026-1653, United States

Received  February 2010 Revised  September 2010 Published  April 2011

We describe optimal protocols for a class of mathematical models for tumor anti-angiogenesis for the problem of minimizing the tumor volume with an a priori given amount of vessel disruptive agents. The family of models is based on a biologically validated model by Hahnfeldt et al. [9] and includes a modification by Ergun et al. [6], but also provides two new variations that interpolate the dynamics for the vascular support between these existing models. The biological reasoning for the modifications of the models will be presented and we will show that despite quite different modeling assumptions, the qualitative structure of optimal controls is robust. For all the systems in the class of models considered here, an optimal singular arc is the defining element and all the syntheses of optimal controlled trajectories are qualitatively equivalent with quantitative differences easily computed.
Citation: Heinz Schättler, Urszula Ledzewicz, Benjamin Cardwell. Robustness of optimal controls for a class of mathematical models for tumor anti-angiogenesis. Mathematical Biosciences & Engineering, 2011, 8 (2) : 355-369. doi: 10.3934/mbe.2011.8.355
References:
[1]

T. Boehm, J. Folkman, T. Browder and M. S. O'Reilly, Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance,, Nature, 390 (1997), 404. doi: 10.1038/37126. Google Scholar

[2]

B. Bonnard and M. Chyba, "Singular Trajectories and Their Role in Control Theory,", Springer Verlag, (2003). Google Scholar

[3]

A. Bressan and B. Piccoli, "Introduction to the Mathematical Theory of Control,", American Institute of Mathematical Sciences, (2007). Google Scholar

[4]

S. Davis and G. D. Yancopoulos, The angiopoietins: Yin and Yang in angiogenesis,, Current Topics in Microbiology and Immunology, 237 (1999), 173. Google Scholar

[5]

A. d'Onofrio and A. Gandolfi, Tumour eradication by antiangiogenic therapy: Analysis and extensions of the model by Hahnfeldt et al. (1999),, Mathematical Biosciences, 191 (2004), 159. doi: 10.1016/j.mbs.2004.06.003. Google Scholar

[6]

A. Ergun, K. Camphausen and L. M. Wein, Optimal scheduling of radiotherapy and angiogenic inhibitors,, Bulletin of Mathematical Biology, 65 (2003), 407. doi: 10.1016/S0092-8240(03)00006-5. Google Scholar

[7]

J. Folkman, Antiangiogenesis: New concept for therapy of solid tumors,, Annals of Surgery, 175 (1972), 409. doi: 10.1097/00000658-197203000-00014. Google Scholar

[8]

J. Folkman, Angiogenesis inhibitors generated by tumors,, Mol. Med., 1 (1995), 120. Google Scholar

[9]

P. Hahnfeldt, D. Panigrahy, J. Folkman and L. Hlatky, Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response, and postvascular dormancy,, Cancer Research, 59 (1999), 4770. Google Scholar

[10]

R. K. Jain, Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy,, Nature Medicine, 7 (2001), 987. doi: 10.1038/nm0901-987. Google Scholar

[11]

R. K. Jain and L. L. Munn, Vascular normalization as a rationale for combining chemotherapy with antiangiogenic agents,, Principles of Practical Oncology, 21 (2007), 1. Google Scholar

[12]

M. Klagsburn and S. Soker, VEGF/VPF: The angiogenesis factor found?,, Current Biology, 3 (1993), 699. doi: 10.1016/0960-9822(93)90073-W. Google Scholar

[13]

R. S. Kerbel, A cancer therapy resistant to resistance,, Nature, 390 (1997), 335. doi: 10.1038/36978. Google Scholar

[14]

U. Ledzewicz, J. Marriott, H. Maurer and H. Schättler, Realizable protocols for optimal administration of drugs in mathematical models for anti-angiogenic treatment,, Mathematical Medicine and Biology, 27 (2010), 157. doi: 10.1093/imammb/dqp012. Google Scholar

[15]

U. Ledzewicz, J. Munden and H. Schättler, Scheduling of angiogenic inhibitors for Gompertzian and logistic tumor growth models,, Discrete and Continuous Dynamical Systems, 12 (2009), 415. doi: 10.3934/dcdsb.2009.12.415. Google Scholar

[16]

U. Ledzewicz and H. Schättler, A synthesis of optimal controls for a model of tumor growth under angiogenic inhibitors,, Proc. 44th IEEE Conference on Decision and Control, (2005), 934. doi: 10.1109/CDC.2005.1582277. Google Scholar

[17]

U. Ledzewicz and H. Schättler, Anti-angiogenic therapy in cancer treatment as an optimal control problem,, SIAM J. on Control and Optimization, 46 (2007), 1052. doi: 10.1137/060665294. Google Scholar

[18]

U. Ledzewicz and H. Schättler, Analysis of a mathematical model for tumor anti-angiogenesis,, Optimal Control Applications and Methods, 29 (2008), 41. doi: 10.1002/oca.814. Google Scholar

[19]

U. Ledzewicz and H. Schättler, Optimal and suboptimal protocols for a class of mathematical models of tumor anti-angiogenesis,, J. of Theoretical Biology, 252 (2008), 295. doi: 10.1016/j.jtbi.2008.02.014. Google Scholar

[20]

L. Norton and R. Simon, Growth curve of an experimental solid tumor following radiotherapy,, J.of the National Cancer Institute, 58 (1977), 1735. Google Scholar

[21]

L. Norton, A Gompertzian model of human breast cancer growth,, Cancer Research, 48 (1988), 7067. Google Scholar

[22]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,", MacMillan, (1964). Google Scholar

[23]

A. Swierniak, Direct and indirect control of cancer populations,, Bulletin of the Polish Academy of Sciences, 56 (2008), 367. Google Scholar

[24]

A. Swierniak, Comparison of six models of antiangiogenic therapy,, Applied Mathematics, 36 (2009), 333. Google Scholar

show all references

References:
[1]

T. Boehm, J. Folkman, T. Browder and M. S. O'Reilly, Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance,, Nature, 390 (1997), 404. doi: 10.1038/37126. Google Scholar

[2]

B. Bonnard and M. Chyba, "Singular Trajectories and Their Role in Control Theory,", Springer Verlag, (2003). Google Scholar

[3]

A. Bressan and B. Piccoli, "Introduction to the Mathematical Theory of Control,", American Institute of Mathematical Sciences, (2007). Google Scholar

[4]

S. Davis and G. D. Yancopoulos, The angiopoietins: Yin and Yang in angiogenesis,, Current Topics in Microbiology and Immunology, 237 (1999), 173. Google Scholar

[5]

A. d'Onofrio and A. Gandolfi, Tumour eradication by antiangiogenic therapy: Analysis and extensions of the model by Hahnfeldt et al. (1999),, Mathematical Biosciences, 191 (2004), 159. doi: 10.1016/j.mbs.2004.06.003. Google Scholar

[6]

A. Ergun, K. Camphausen and L. M. Wein, Optimal scheduling of radiotherapy and angiogenic inhibitors,, Bulletin of Mathematical Biology, 65 (2003), 407. doi: 10.1016/S0092-8240(03)00006-5. Google Scholar

[7]

J. Folkman, Antiangiogenesis: New concept for therapy of solid tumors,, Annals of Surgery, 175 (1972), 409. doi: 10.1097/00000658-197203000-00014. Google Scholar

[8]

J. Folkman, Angiogenesis inhibitors generated by tumors,, Mol. Med., 1 (1995), 120. Google Scholar

[9]

P. Hahnfeldt, D. Panigrahy, J. Folkman and L. Hlatky, Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response, and postvascular dormancy,, Cancer Research, 59 (1999), 4770. Google Scholar

[10]

R. K. Jain, Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy,, Nature Medicine, 7 (2001), 987. doi: 10.1038/nm0901-987. Google Scholar

[11]

R. K. Jain and L. L. Munn, Vascular normalization as a rationale for combining chemotherapy with antiangiogenic agents,, Principles of Practical Oncology, 21 (2007), 1. Google Scholar

[12]

M. Klagsburn and S. Soker, VEGF/VPF: The angiogenesis factor found?,, Current Biology, 3 (1993), 699. doi: 10.1016/0960-9822(93)90073-W. Google Scholar

[13]

R. S. Kerbel, A cancer therapy resistant to resistance,, Nature, 390 (1997), 335. doi: 10.1038/36978. Google Scholar

[14]

U. Ledzewicz, J. Marriott, H. Maurer and H. Schättler, Realizable protocols for optimal administration of drugs in mathematical models for anti-angiogenic treatment,, Mathematical Medicine and Biology, 27 (2010), 157. doi: 10.1093/imammb/dqp012. Google Scholar

[15]

U. Ledzewicz, J. Munden and H. Schättler, Scheduling of angiogenic inhibitors for Gompertzian and logistic tumor growth models,, Discrete and Continuous Dynamical Systems, 12 (2009), 415. doi: 10.3934/dcdsb.2009.12.415. Google Scholar

[16]

U. Ledzewicz and H. Schättler, A synthesis of optimal controls for a model of tumor growth under angiogenic inhibitors,, Proc. 44th IEEE Conference on Decision and Control, (2005), 934. doi: 10.1109/CDC.2005.1582277. Google Scholar

[17]

U. Ledzewicz and H. Schättler, Anti-angiogenic therapy in cancer treatment as an optimal control problem,, SIAM J. on Control and Optimization, 46 (2007), 1052. doi: 10.1137/060665294. Google Scholar

[18]

U. Ledzewicz and H. Schättler, Analysis of a mathematical model for tumor anti-angiogenesis,, Optimal Control Applications and Methods, 29 (2008), 41. doi: 10.1002/oca.814. Google Scholar

[19]

U. Ledzewicz and H. Schättler, Optimal and suboptimal protocols for a class of mathematical models of tumor anti-angiogenesis,, J. of Theoretical Biology, 252 (2008), 295. doi: 10.1016/j.jtbi.2008.02.014. Google Scholar

[20]

L. Norton and R. Simon, Growth curve of an experimental solid tumor following radiotherapy,, J.of the National Cancer Institute, 58 (1977), 1735. Google Scholar

[21]

L. Norton, A Gompertzian model of human breast cancer growth,, Cancer Research, 48 (1988), 7067. Google Scholar

[22]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,", MacMillan, (1964). Google Scholar

[23]

A. Swierniak, Direct and indirect control of cancer populations,, Bulletin of the Polish Academy of Sciences, 56 (2008), 367. Google Scholar

[24]

A. Swierniak, Comparison of six models of antiangiogenic therapy,, Applied Mathematics, 36 (2009), 333. Google Scholar

[1]

Urszula Ledzewicz, Heinz Schättler. On the optimality of singular controls for a class of mathematical models for tumor anti-angiogenesis. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 691-715. doi: 10.3934/dcdsb.2009.11.691

[2]

Urszula Ledzewicz, Helmut Maurer, Heinz Schättler. Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy. Mathematical Biosciences & Engineering, 2011, 8 (2) : 307-323. doi: 10.3934/mbe.2011.8.307

[3]

Evgeny I. Veremey, Vladimir V. Eremeev. SISO H-Optimal synthesis with initially specified structure of control law. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 121-138. doi: 10.3934/naco.2017009

[4]

Ivan Landjev, Assia Rousseva. Characterization of some optimal arcs. Advances in Mathematics of Communications, 2011, 5 (2) : 317-331. doi: 10.3934/amc.2011.5.317

[5]

Filippo Cacace, Valerio Cusimano, Alfredo Germani, Pasquale Palumbo, Federico Papa. Closed-loop control of tumor growth by means of anti-angiogenic administration. Mathematical Biosciences & Engineering, 2018, 15 (4) : 827-839. doi: 10.3934/mbe.2018037

[6]

Luis L. Bonilla, Vincenzo Capasso, Mariano Alvaro, Manuel Carretero, Filippo Terragni. On the mathematical modelling of tumor-induced angiogenesis. Mathematical Biosciences & Engineering, 2017, 14 (1) : 45-66. doi: 10.3934/mbe.2017004

[7]

Maciej Leszczyński, Urszula Ledzewicz, Heinz Schättler. Optimal control for a mathematical model for anti-angiogenic treatment with Michaelis-Menten pharmacodynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2315-2334. doi: 10.3934/dcdsb.2019097

[8]

M. Delgado-Téllez, Alberto Ibort. On the geometry and topology of singular optimal control problems and their solutions. Conference Publications, 2003, 2003 (Special) : 223-233. doi: 10.3934/proc.2003.2003.223

[9]

Urszula Ledzewicz, Mohammad Naghnaeian, Heinz Schättler. Dynamics of tumor-immune interaction under treatment as an optimal control problem. Conference Publications, 2011, 2011 (Special) : 971-980. doi: 10.3934/proc.2011.2011.971

[10]

Shuo Wang, Heinz Schättler. Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1223-1240. doi: 10.3934/mbe.2016040

[11]

Michael W. Smiley, Howard A. Levine, Marit Nilsen Hamilton. Numerical simulation of capillary formation during the onset of tumor angiogenesis. Conference Publications, 2003, 2003 (Special) : 817-826. doi: 10.3934/proc.2003.2003.817

[12]

Zejia Wang, Suzhen Xu, Huijuan Song. Stationary solutions of a free boundary problem modeling growth of angiogenesis tumor with inhibitor. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2593-2605. doi: 10.3934/dcdsb.2018129

[13]

Yaodan Huang, Zhengce Zhang, Bei Hu. Bifurcation from stability to instability for a free boundary tumor model with angiogenesis. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2473-2510. doi: 10.3934/dcds.2019105

[14]

Jiamin Zhu, Emmanuel Trélat, Max Cerf. Planar tilting maneuver of a spacecraft: Singular arcs in the minimum time problem and chattering. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1347-1388. doi: 10.3934/dcdsb.2016.21.1347

[15]

Shihchung Chiang. Numerical optimal unbounded control with a singular integro-differential equation as a constraint. Conference Publications, 2013, 2013 (special) : 129-137. doi: 10.3934/proc.2013.2013.129

[16]

Térence Bayen, Marc Mazade, Francis Mairet. Analysis of an optimal control problem connected to bioprocesses involving a saturated singular arc. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 39-58. doi: 10.3934/dcdsb.2015.20.39

[17]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi, Elisabetta Rocca. Optimal control for a phase field system with a possibly singular potential. Mathematical Control & Related Fields, 2016, 6 (1) : 95-112. doi: 10.3934/mcrf.2016.6.95

[18]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi, Elisabetta Rocca. Optimal control for a conserved phase field system with a possibly singular potential. Evolution Equations & Control Theory, 2018, 7 (1) : 95-116. doi: 10.3934/eect.2018006

[19]

Z. Foroozandeh, Maria do rosário de Pinho, M. Shamsi. On numerical methods for singular optimal control problems: An application to an AUV problem. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2219-2235. doi: 10.3934/dcdsb.2019092

[20]

Shuo Wang, Heinz Schättler. Optimal control for cancer chemotherapy under tumor heterogeneity with Michealis-Menten pharmacodynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2383-2405. doi: 10.3934/dcdsb.2019100

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

[Back to Top]