2011, 8(2): 371-383. doi: 10.3934/mbe.2011.8.371

Tumor cells proliferation and migration under the influence of their microenvironment

1. 

Department of Mathematics, Ohio State University, Columbus, OH 43210, United States

2. 

Department of Mathematics & Statistics, University of Michigan, Dearborn, MI 48128

Received  February 2010 Revised  October 2010 Published  April 2011

It is well known that tumor microenvironment affects tumor growth and metastasis: Tumor cells may proliferate at different rates and migrate in different patterns depending on the microenvironment in which they are embedded. There is a huge literature that deals with mathematical models of tumor growth and proliferation, in both the avascular and vascular phases. In particular, a review of the literature of avascular tumor growth (up to 2006) can be found in Lolas [8] (G. Lolas, Lecture Notes in Mathematics, Springer Berlin / Heidelberg, 1872, 77 (2006)). In this article we report on some of our recent work. We consider two aspects, proliferation and of migration, and describe mathematical models based on in vitro experiments. Simulations of the models are in agreement with experimental results. The models can be used to generate hypotheses regarding the development of drugs which will confine tumor growth.
Citation: Avner Friedman, Yangjin Kim. Tumor cells proliferation and migration under the influence of their microenvironment. Mathematical Biosciences & Engineering, 2011, 8 (2) : 371-383. doi: 10.3934/mbe.2011.8.371
References:
[1]

K. Asano, C. D. Duntsch, Q. Zhou, J. D. Weimar, D. Bordelon, J. H. Robertson and T. Pourmotabbed, Correlation of n-cadherin expression in high grade gliomas with tissue invasion,, J Neurooncol, 70 (2004), 3.  doi: 10.1023/B:NEON.0000040811.14908.f2.  Google Scholar

[2]

S. Aznavoorian, M. L. Stracke, H. Krutzsch, E. Schiffmann and L. A. Liotta, Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumor cells,, J Cell Biol, 110 (1990), 1427.  doi: 10.1083/jcb.110.4.1427.  Google Scholar

[3]

N. A. Bhowmick, E. G. Neilson and H. L. Moses, Stromal fibroblasts in cancer initiation and progression,, Nature, 432 (2004), 332.  doi: 10.1038/nature03096.  Google Scholar

[4]

E. Khain and L. M. Sander, Dynamics and pattern formation in invasive tumor growth,, Phys. Rev. Lett., 96 (2006).  doi: 10.1103/PhysRevLett.96.188103.  Google Scholar

[5]

Y. Kim and A. Friedman, Interaction of tumor with its microenvironment: A mathematical model,, Bull. Math. Biol., 72 (2010), 1029.  doi: 10.1007/s11538-009-9481-z.  Google Scholar

[6]

Y. Kim, J. Wallace, F. Li, M. Ostrowski and A. Friedman, Transformed epithelial cells and fibroblasts/myofibroblasts interaction in breast tumor: A mathematical model and experiments,, J. Math. Biol., 61 (2010), 401.  doi: 10.1007/s00285-009-0307-2.  Google Scholar

[7]

Y. Kim, S. Lawler, M. O. Nowicki, E. A Chiocca and A. Friedman, A mathematical model of brain tumor : Pattern formation of glioma cells outside the tumor spheroid core,, Journal of Theoretical Biology, 260 (2009), 359.  doi: 10.1016/j.jtbi.2009.06.025.  Google Scholar

[8]

G. Lolas, Mathematical modelling of proteolysis and cancer cell invasion of tissue,, in, (2006), 77.   Google Scholar

[9]

M. M. Mueller and N. E. Fusenig, Friends or foes - bipolar effects of the tumour stroma in cancer,, Nat Rev Cancer, 4 (2004), 839.  doi: 10.1038/nrc1477.  Google Scholar

[10]

A. J. Perumpanani and H. M. Byrne, Extracellular matrix concentration exerts selection pressure on invasive cells,, Eur. J. Cancer, 35 (1999), 1274.  doi: 10.1016/S0959-8049(99)00125-2.  Google Scholar

[11]

M. Samoszuk, J. Tan and G. Chorn, Clonogenic growth of human breast cancer cells co-cultured in direct contact with serum-activated fibroblasts,, Breast Cancer Res, 7 (2005).  doi: 10.1186/bcr995.  Google Scholar

[12]

L. M. Sander and T. S. Deisboeck, Growth patterns of microscopic brain tumors,, Phys. Rev. E, 66 (2002).  doi: 10.1103/PhysRevE.66.051901.  Google Scholar

[13]

J. A. Sherratt and J. D. Murray, Models of epidermal wound healing,, Proc. R. Soc. Lond., B241 (1990), 29.  doi: 10.1098/rspb.1990.0061.  Google Scholar

[14]

A. M. Stein, T. Demuth, D. Mobley, M. Berens and L. M. Sander, A mathematical model of glioblastoma tumor spheroid invasion in a three-dimensional in vitro experiment,, Biophys. J., 92 (2007), 356.  doi: 10.1529/biophysj.106.093468.  Google Scholar

[15]

K. R. Swanson, E. C. Alvord and J. D. Murray, A quantitative model for differential motility of gliomas in grey and white matter,, Cell Prolif., 33 (2000), 317.  doi: 10.1046/j.1365-2184.2000.00177.x.  Google Scholar

[16]

K. R. Swanson, E. C. Alvord and J. D. Murray, Virtual resection of gliomas: Effect of extent of resection on recurrence,, Math. Comp. Modelling, 37 (2003), 1177.  doi: 10.1016/S0895-7177(03)00129-8.  Google Scholar

[17]

M. Yashiro, K. Ikeda, M. Tendo, T. Ishikawa and K. Hirakawa, Effect of organ-specific fibroblasts on proliferation and differentiation of breast cancer cells,, Breast Cancer Res Treat, 90 (2005), 307.  doi: 10.1007/s10549-004-5364-z.  Google Scholar

[18]

K. Yuan, R. K. Singh, G. Rezonzew and G. P. Siegal, Cell motility in cancer invasion and metastasis,, in, (2006), 25.   Google Scholar

show all references

References:
[1]

K. Asano, C. D. Duntsch, Q. Zhou, J. D. Weimar, D. Bordelon, J. H. Robertson and T. Pourmotabbed, Correlation of n-cadherin expression in high grade gliomas with tissue invasion,, J Neurooncol, 70 (2004), 3.  doi: 10.1023/B:NEON.0000040811.14908.f2.  Google Scholar

[2]

S. Aznavoorian, M. L. Stracke, H. Krutzsch, E. Schiffmann and L. A. Liotta, Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumor cells,, J Cell Biol, 110 (1990), 1427.  doi: 10.1083/jcb.110.4.1427.  Google Scholar

[3]

N. A. Bhowmick, E. G. Neilson and H. L. Moses, Stromal fibroblasts in cancer initiation and progression,, Nature, 432 (2004), 332.  doi: 10.1038/nature03096.  Google Scholar

[4]

E. Khain and L. M. Sander, Dynamics and pattern formation in invasive tumor growth,, Phys. Rev. Lett., 96 (2006).  doi: 10.1103/PhysRevLett.96.188103.  Google Scholar

[5]

Y. Kim and A. Friedman, Interaction of tumor with its microenvironment: A mathematical model,, Bull. Math. Biol., 72 (2010), 1029.  doi: 10.1007/s11538-009-9481-z.  Google Scholar

[6]

Y. Kim, J. Wallace, F. Li, M. Ostrowski and A. Friedman, Transformed epithelial cells and fibroblasts/myofibroblasts interaction in breast tumor: A mathematical model and experiments,, J. Math. Biol., 61 (2010), 401.  doi: 10.1007/s00285-009-0307-2.  Google Scholar

[7]

Y. Kim, S. Lawler, M. O. Nowicki, E. A Chiocca and A. Friedman, A mathematical model of brain tumor : Pattern formation of glioma cells outside the tumor spheroid core,, Journal of Theoretical Biology, 260 (2009), 359.  doi: 10.1016/j.jtbi.2009.06.025.  Google Scholar

[8]

G. Lolas, Mathematical modelling of proteolysis and cancer cell invasion of tissue,, in, (2006), 77.   Google Scholar

[9]

M. M. Mueller and N. E. Fusenig, Friends or foes - bipolar effects of the tumour stroma in cancer,, Nat Rev Cancer, 4 (2004), 839.  doi: 10.1038/nrc1477.  Google Scholar

[10]

A. J. Perumpanani and H. M. Byrne, Extracellular matrix concentration exerts selection pressure on invasive cells,, Eur. J. Cancer, 35 (1999), 1274.  doi: 10.1016/S0959-8049(99)00125-2.  Google Scholar

[11]

M. Samoszuk, J. Tan and G. Chorn, Clonogenic growth of human breast cancer cells co-cultured in direct contact with serum-activated fibroblasts,, Breast Cancer Res, 7 (2005).  doi: 10.1186/bcr995.  Google Scholar

[12]

L. M. Sander and T. S. Deisboeck, Growth patterns of microscopic brain tumors,, Phys. Rev. E, 66 (2002).  doi: 10.1103/PhysRevE.66.051901.  Google Scholar

[13]

J. A. Sherratt and J. D. Murray, Models of epidermal wound healing,, Proc. R. Soc. Lond., B241 (1990), 29.  doi: 10.1098/rspb.1990.0061.  Google Scholar

[14]

A. M. Stein, T. Demuth, D. Mobley, M. Berens and L. M. Sander, A mathematical model of glioblastoma tumor spheroid invasion in a three-dimensional in vitro experiment,, Biophys. J., 92 (2007), 356.  doi: 10.1529/biophysj.106.093468.  Google Scholar

[15]

K. R. Swanson, E. C. Alvord and J. D. Murray, A quantitative model for differential motility of gliomas in grey and white matter,, Cell Prolif., 33 (2000), 317.  doi: 10.1046/j.1365-2184.2000.00177.x.  Google Scholar

[16]

K. R. Swanson, E. C. Alvord and J. D. Murray, Virtual resection of gliomas: Effect of extent of resection on recurrence,, Math. Comp. Modelling, 37 (2003), 1177.  doi: 10.1016/S0895-7177(03)00129-8.  Google Scholar

[17]

M. Yashiro, K. Ikeda, M. Tendo, T. Ishikawa and K. Hirakawa, Effect of organ-specific fibroblasts on proliferation and differentiation of breast cancer cells,, Breast Cancer Res Treat, 90 (2005), 307.  doi: 10.1007/s10549-004-5364-z.  Google Scholar

[18]

K. Yuan, R. K. Singh, G. Rezonzew and G. P. Siegal, Cell motility in cancer invasion and metastasis,, in, (2006), 25.   Google Scholar

[1]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[2]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[3]

Urszula Ledzewicz, Heinz Schättler. On the role of pharmacometrics in mathematical models for cancer treatments. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 483-499. doi: 10.3934/dcdsb.2020213

[4]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[5]

Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 541-602. doi: 10.3934/dcdsb.2020282

[6]

Shujing Shi, Jicai Huang, Yang Kuang. Global dynamics in a tumor-immune model with an immune checkpoint inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1149-1170. doi: 10.3934/dcdsb.2020157

[7]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[8]

Niklas Kolbe, Nikolaos Sfakianakis, Christian Stinner, Christina Surulescu, Jonas Lenz. Modeling multiple taxis: Tumor invasion with phenotypic heterogeneity, haptotaxis, and unilateral interspecies repellence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 443-481. doi: 10.3934/dcdsb.2020284

[9]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[10]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[11]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[12]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[13]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[14]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227

[15]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[16]

Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020388

[17]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

[18]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021005

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (18)

Other articles
by authors

[Back to Top]