• Previous Article
    Sensitivity of hemodynamics in a patient specific cerebral aneurysm to vascular geometry and blood rheology
  • MBE Home
  • This Issue
  • Next Article
    Regulation of modular Cyclin and CDK feedback loops by an E2F transcription oscillator in the mammalian cell cycle
2011, 8(2): 425-443. doi: 10.3934/mbe.2011.8.425

Blood coagulation dynamics: mathematical modeling and stability results

1. 

Department of Mathematics and CEMAT/IST, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

2. 

Department of Mathematics and CEMAT/IST, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas 8005-139 Faro, Portugal

3. 

Department of Technical Mathematics, Faculty of Mechanical Engineering, Czech Technical University, Náměstí 13, 121 35 Prague 2, Czech Republic

Received  March 2010 Revised  September 2010 Published  April 2011

The hemostatic system is a highly complex multicomponent biosystem that under normal physiologic conditions maintains the fluidity of blood. Coagulation is initiated in response to endothelial surface vascular injury or certain biochemical stimuli, by the exposure of plasma to Tissue Factor (TF), that activates platelets and the coagulation cascade, inducing clot formation, growth and lysis. In recent years considerable advances have contributed to understand this highly complex process and some mathematical and numerical models have been developed. However, mathematical models that are both rigorous and comprehensive in terms of meaningful experimental data, are not available yet. In this paper a mathematical model of coagulation and fibrinolysis in flowing blood that integrates biochemical, physiologic and rheological factors, is revisited. Three-dimensional numerical simulations are performed in an idealized stenosed blood vessel where clot formation and growth are initialized through appropriate boundary conditions on a prescribed region of the vessel wall. Stability results are obtained for a simplified version of the clot model in quiescent plasma, involving some of the most relevant enzymatic reactions that follow Michaelis-Menten kinetics, and having a continuum of equilibria.
Citation: Adélia Sequeira, Rafael F. Santos, Tomáš Bodnár. Blood coagulation dynamics: mathematical modeling and stability results. Mathematical Biosciences & Engineering, 2011, 8 (2) : 425-443. doi: 10.3934/mbe.2011.8.425
References:
[1]

M. Anand, K. Rajagopal and K. R. Rajagopal, A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood,, J. of Theoretical Medicine, 5 (2003), 183. doi: 10.1080/10273660412331317415.

[2]

M. Anand, K. Rajagopal and K. R. Rajagopal, A model for the formation, growth, and lysis of clots in quiescent plasma. A comparison between the effects of antithrombin III deficiency and protein C deficiency,, J. of Theoretical Biology, 253 (2008), 725. doi: 10.1016/j.jtbi.2008.04.015.

[3]

F. I. Ataullakhanov and M. A. Panteleev, Mathematical modeling and computer simulation in blood coagulation,, Pathophysiol. Haemost. Thromb., 34 (2005), 60. doi: 10.1159/000089927.

[4]

S. P. Bhat and D. S. Bernstein, Nontangency-based Lyapunov tests for convergence and stability in systems having a continuum of equilibria,, SIAM J. Control Optim., 42 (2003), 1745. doi: 10.1137/S0363012902407119.

[5]

T. Bodnár and A. Sequeira, Numerical simulation of the coagulation dynamics of blood,, Comp. Math. Methods in Medicine, 9 (2008), 83. doi: 10.1080/17486700701852784.

[6]

I. Borsi, A. Farina, A. Fasano and K. R. Rajagopal, Modelling the combined chemical and mechanical action for blood clotting,, In, 29 (2008), 53.

[7]

S. L. Campbell and N. J. Rose, Singular perturbations of autonomous linear systems,, SIAM Journal Math. Anal., 10 (1979), 542. doi: 10.1137/0510051.

[8]

M. H. Kroll, J. D. Hellums, L. V. McIntire, A. I. Schafer and J. L. Moake, Platelets and shear stress,, Blood, 88 (1996), 1525.

[9]

A. L. Kuharsky and A. L. Fogelson, Surface-mediated control of blood coagulation: The role of binding site densities and platelet deposition,, Biophys. J., 80 (2001), 1050. doi: 10.1016/S0006-3495(01)76085-7.

[10]

A. Leuprecht and K. Perktold, Computer simulation of non-Newtonian effects of blood flow in large arteries,, Computer Methods in Biomechanics and Biomech. Eng., 4 (2001), 149.

[11]

L. Michaelis and M. L. Menten, Die kinetik der invertinwirkung,, Biochem Z., 49 (1913), 333.

[12]

Y. H. Qiao, J. L. Liu and Y. J. Zeng, A kinetic model for simulation of blood coagulation and inhibition in the intrinsic path,, J. of Medical Eng. and Technology, 29 (2005), 70. doi: 10.1080/03091900410001709079.

[13]

A. M. Robertson, A. Sequeira and M. V. Kameneva, Hemorheology,, In, (2008), 63.

[14]

M. Schenone, B. C. Furie and B. Furie, The blood coagulation cascade,, Curr. Opin. Hematol., 11 (2004), 272. doi: 10.1097/01.moh.0000130308.37353.d4.

[15]

L. A. Segel and M. Slemrod, The quasy-steady-state assumption: A case study in perturbation,, SIAM Review, 32 (1989), 446. doi: 10.1137/1031091.

[16]

N. T. Wang and A. L. Fogelson, Computational methods for continuum models of platelet aggregation,, J. Comput. Phys., 151 (1999), 649. doi: 10.1006/jcph.1999.6212.

show all references

References:
[1]

M. Anand, K. Rajagopal and K. R. Rajagopal, A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood,, J. of Theoretical Medicine, 5 (2003), 183. doi: 10.1080/10273660412331317415.

[2]

M. Anand, K. Rajagopal and K. R. Rajagopal, A model for the formation, growth, and lysis of clots in quiescent plasma. A comparison between the effects of antithrombin III deficiency and protein C deficiency,, J. of Theoretical Biology, 253 (2008), 725. doi: 10.1016/j.jtbi.2008.04.015.

[3]

F. I. Ataullakhanov and M. A. Panteleev, Mathematical modeling and computer simulation in blood coagulation,, Pathophysiol. Haemost. Thromb., 34 (2005), 60. doi: 10.1159/000089927.

[4]

S. P. Bhat and D. S. Bernstein, Nontangency-based Lyapunov tests for convergence and stability in systems having a continuum of equilibria,, SIAM J. Control Optim., 42 (2003), 1745. doi: 10.1137/S0363012902407119.

[5]

T. Bodnár and A. Sequeira, Numerical simulation of the coagulation dynamics of blood,, Comp. Math. Methods in Medicine, 9 (2008), 83. doi: 10.1080/17486700701852784.

[6]

I. Borsi, A. Farina, A. Fasano and K. R. Rajagopal, Modelling the combined chemical and mechanical action for blood clotting,, In, 29 (2008), 53.

[7]

S. L. Campbell and N. J. Rose, Singular perturbations of autonomous linear systems,, SIAM Journal Math. Anal., 10 (1979), 542. doi: 10.1137/0510051.

[8]

M. H. Kroll, J. D. Hellums, L. V. McIntire, A. I. Schafer and J. L. Moake, Platelets and shear stress,, Blood, 88 (1996), 1525.

[9]

A. L. Kuharsky and A. L. Fogelson, Surface-mediated control of blood coagulation: The role of binding site densities and platelet deposition,, Biophys. J., 80 (2001), 1050. doi: 10.1016/S0006-3495(01)76085-7.

[10]

A. Leuprecht and K. Perktold, Computer simulation of non-Newtonian effects of blood flow in large arteries,, Computer Methods in Biomechanics and Biomech. Eng., 4 (2001), 149.

[11]

L. Michaelis and M. L. Menten, Die kinetik der invertinwirkung,, Biochem Z., 49 (1913), 333.

[12]

Y. H. Qiao, J. L. Liu and Y. J. Zeng, A kinetic model for simulation of blood coagulation and inhibition in the intrinsic path,, J. of Medical Eng. and Technology, 29 (2005), 70. doi: 10.1080/03091900410001709079.

[13]

A. M. Robertson, A. Sequeira and M. V. Kameneva, Hemorheology,, In, (2008), 63.

[14]

M. Schenone, B. C. Furie and B. Furie, The blood coagulation cascade,, Curr. Opin. Hematol., 11 (2004), 272. doi: 10.1097/01.moh.0000130308.37353.d4.

[15]

L. A. Segel and M. Slemrod, The quasy-steady-state assumption: A case study in perturbation,, SIAM Review, 32 (1989), 446. doi: 10.1137/1031091.

[16]

N. T. Wang and A. L. Fogelson, Computational methods for continuum models of platelet aggregation,, J. Comput. Phys., 151 (1999), 649. doi: 10.1006/jcph.1999.6212.

[1]

Georgy Th. Guria, Miguel A. Herrero, Ksenia E. Zlobina. A mathematical model of blood coagulation induced by activation sources. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 175-194. doi: 10.3934/dcds.2009.25.175

[2]

Jacek Banasiak, Wilson Lamb. Coagulation, fragmentation and growth processes in a size structured population. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 563-585. doi: 10.3934/dcdsb.2009.11.563

[3]

Jacek Banasiak. Blow-up of solutions to some coagulation and fragmentation equations with growth. Conference Publications, 2011, 2011 (Special) : 126-134. doi: 10.3934/proc.2011.2011.126

[4]

Xiaoming Zheng, Gou Young Koh, Trachette Jackson. A continuous model of angiogenesis: Initiation, extension, and maturation of new blood vessels modulated by vascular endothelial growth factor, angiopoietins, platelet-derived growth factor-B, and pericytes. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : 1109-1154. doi: 10.3934/dcdsb.2013.18.1109

[5]

Ankik Kumar Giri. On the uniqueness for coagulation and multiple fragmentation equation. Kinetic & Related Models, 2013, 6 (3) : 589-599. doi: 10.3934/krm.2013.6.589

[6]

Jacek Banasiak. Transport processes with coagulation and strong fragmentation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 445-472. doi: 10.3934/dcdsb.2012.17.445

[7]

Konstantinos Drakakis, Scott Rickard. On the generalization of the Costas property in the continuum. Advances in Mathematics of Communications, 2008, 2 (2) : 113-130. doi: 10.3934/amc.2008.2.113

[8]

Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics & Games, 2014, 1 (3) : 537-553. doi: 10.3934/jdg.2014.1.537

[9]

Alessia Marigo. Equilibria for data networks. Networks & Heterogeneous Media, 2007, 2 (3) : 497-528. doi: 10.3934/nhm.2007.2.497

[10]

Antonio Giorgilli. Unstable equilibria of Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 855-871. doi: 10.3934/dcds.2001.7.855

[11]

Tong Li, Sunčica Čanić. Critical thresholds in a quasilinear hyperbolic model of blood flow. Networks & Heterogeneous Media, 2009, 4 (3) : 527-536. doi: 10.3934/nhm.2009.4.527

[12]

Tong Li, Kun Zhao. On a quasilinear hyperbolic system in blood flow modeling. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 333-344. doi: 10.3934/dcdsb.2011.16.333

[13]

Chun Zong, Gen Qi Xu. Observability and controllability analysis of blood flow network. Mathematical Control & Related Fields, 2014, 4 (4) : 521-554. doi: 10.3934/mcrf.2014.4.521

[14]

Philippe Laurençot, Barbara Niethammer, Juan J.L. Velázquez. Oscillatory dynamics in Smoluchowski's coagulation equation with diagonal kernel. Kinetic & Related Models, 2018, 11 (4) : 933-952. doi: 10.3934/krm.2018037

[15]

Maxime Breden. Applications of improved duality lemmas to the discrete coagulation-fragmentation equations with diffusion. Kinetic & Related Models, 2018, 11 (2) : 279-301. doi: 10.3934/krm.2018014

[16]

Pierre Degond, Maximilian Engel. Numerical approximation of a coagulation-fragmentation model for animal group size statistics. Networks & Heterogeneous Media, 2017, 12 (2) : 217-243. doi: 10.3934/nhm.2017009

[17]

Miguel A. Herrero, Marianito R. Rodrigo. Remarks on accessible steady states for some coagulation-fragmentation systems. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 541-552. doi: 10.3934/dcds.2007.17.541

[18]

Wilson Lamb, Adam McBride, Louise Smith. Coagulation and fragmentation processes with evolving size and shape profiles: A semigroup approach. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5177-5187. doi: 10.3934/dcds.2013.33.5177

[19]

Carlos Escudero, Fabricio Macià, Raúl Toral, Juan J. L. Velázquez. Kinetic theory and numerical simulations of two-species coagulation. Kinetic & Related Models, 2014, 7 (2) : 253-290. doi: 10.3934/krm.2014.7.253

[20]

Lee DeVille, Nicole Riemer, Matthew West. Convergence of a generalized Weighted Flow Algorithm for stochastic particle coagulation. Journal of Computational Dynamics, 2018, 0 (0) : 1-26. doi: 10.3934/jcd.2019003

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

[Back to Top]