Citation: |
[1] |
M. Anand, K. Rajagopal and K. R. Rajagopal, A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood, J. of Theoretical Medicine, 5 (2003), 183-218.doi: 10.1080/10273660412331317415. |
[2] |
M. Anand, K. Rajagopal and K. R. Rajagopal, A model for the formation, growth, and lysis of clots in quiescent plasma. A comparison between the effects of antithrombin III deficiency and protein C deficiency, J. of Theoretical Biology, 253 (2008), 725-738.doi: 10.1016/j.jtbi.2008.04.015. |
[3] |
F. I. Ataullakhanov and M. A. Panteleev, Mathematical modeling and computer simulation in blood coagulation, Pathophysiol. Haemost. Thromb., 34 (2005), 60-70.doi: 10.1159/000089927. |
[4] |
S. P. Bhat and D. S. Bernstein, Nontangency-based Lyapunov tests for convergence and stability in systems having a continuum of equilibria, SIAM J. Control Optim., 42 (2003), 1745-1775.doi: 10.1137/S0363012902407119. |
[5] |
T. Bodnár and A. Sequeira, Numerical simulation of the coagulation dynamics of blood, Comp. Math. Methods in Medicine, 9 (2008), 83-104.doi: 10.1080/17486700701852784. |
[6] |
I. Borsi, A. Farina, A. Fasano and K. R. Rajagopal, Modelling the combined chemical and mechanical action for blood clotting, In "Nonlinear Phenomena with Energy Dissipation," volume 29 of GAKUTO Internat. Ser. Math. Sci. Appl., pages 53-72. Gakkōtosho, Tokyo, 2008. |
[7] |
S. L. Campbell and N. J. Rose, Singular perturbations of autonomous linear systems, SIAM Journal Math. Anal., 10 (1979), 542-551.doi: 10.1137/0510051. |
[8] |
M. H. Kroll, J. D. Hellums, L. V. McIntire, A. I. Schafer and J. L. Moake, Platelets and shear stress, Blood, 88 (1996), 1525-1541. |
[9] |
A. L. Kuharsky and A. L. Fogelson, Surface-mediated control of blood coagulation: The role of binding site densities and platelet deposition, Biophys. J., 80 (2001), 1050-1074.doi: 10.1016/S0006-3495(01)76085-7. |
[10] |
A. Leuprecht and K. Perktold, Computer simulation of non-Newtonian effects of blood flow in large arteries, Computer Methods in Biomechanics and Biomech. Eng., 4 (2001), 149-163. |
[11] |
L. Michaelis and M. L. Menten, Die kinetik der invertinwirkung, Biochem Z., 49 (1913), 333-369. |
[12] |
Y. H. Qiao, J. L. Liu and Y. J. Zeng, A kinetic model for simulation of blood coagulation and inhibition in the intrinsic path, J. of Medical Eng. and Technology, 29 (2005), 70-74.doi: 10.1080/03091900410001709079. |
[13] |
A. M. Robertson, A. Sequeira and M. V. Kameneva, Hemorheology, In "Hemodynamical Flows: Modeling, Analysis and Simulation (Oberwolfach Seminars)," volume 37, G.P. Galdi, R. Rannacher, A. M. Robertson, and S. Turek (Eds.), Birkhäuser Verlag, 2008, 63-120. |
[14] |
M. Schenone, B. C. Furie and B. Furie, The blood coagulation cascade, Curr. Opin. Hematol., 11 (2004), 272-277.doi: 10.1097/01.moh.0000130308.37353.d4. |
[15] |
L. A. Segel and M. Slemrod, The quasy-steady-state assumption: A case study in perturbation, SIAM Review, 32 (1989), 446-477.doi: 10.1137/1031091. |
[16] |
N. T. Wang and A. L. Fogelson, Computational methods for continuum models of platelet aggregation, J. Comput. Phys., 151 (1999), 649-675.doi: 10.1006/jcph.1999.6212. |