Citation: |
[1] |
B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, "Molecular Biology of the Cell," fifth edition, Garland Science, a member of the Taylor and Francis Group, 29 West 35th Street, New York, NY, 2007. |
[2] |
T. Bashir, N. V. Dorrello, V. Amador, D. Guardavaccaro and M. Pagano, Control of the scf(skp2-cks1) ubiquitin ligase by the apc/c(cdh1) ubiquitin ligase, Nature, 428 (2004), 190-193.doi: 10.1038/nature02330. |
[3] |
D. Bech-Otschir, M. Seeger and W. Dubiel, The cop9 signalosome: At the interface between signal transduction and ubiquitin-dependent proteolysis, J. Cell Sci., 115 (2002), 467-73. |
[4] |
C. Berthet, E. Aleem, V. Coppola, L. Tessarollo and P. Kaldis, Cdk2 knockout mice are viable, Curr. Biol., 13 (2003), 1775-1785.doi: 10.1016/j.cub.2003.09.024. |
[5] |
M. Bilodeau, H. Talarmin, G. Ilyin, C. Rescan, D. Glaise, S. Cariou, P. Loyer, C. Guguen-Guillouzo and G. Baffet, Skp2 induction and phosphorylation is associated with the late g1 phase of proliferating rat hepatocytes, FEBS Lett, 452 (1999), 247-253.doi: 10.1016/S0014-5793(99)00629-8. |
[6] |
M. Brandeis, I. Rosewell, M. Carrington, T. Crompton, M. A. Jacobs, J. Kirk, J. Gannon and T. Hunt, Cyclin b2-null mice develop normally and are fertile whereas cyclin b1-null mice die in utero, Proc. Natl. Acad. Sci. U.S.A., 95 (1998), 4344-4349.doi: 10.1073/pnas.95.8.4344. |
[7] |
K. C. Chen, L. Calzone, A. Csikasz-Nagy, F. R. Cross, B. Novak and J. J. Tyson, Integrative analysis of cell cycle control in budding yeast, Mol. Biol. Cell, 15 (2004), 3841-3862.doi: 10.1091/mbc.E03-11-0794. |
[8] |
L. Chen, R. Wang, T. J. Kobayashi and K. Aihara, Dynamics of gene regulatory networks with cell division cycle, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 70 (2004), 011909.doi: 10.1103/PhysRevE.70.011909. |
[9] |
M. Cheng, P. Olivier, J. A. Diehl, M. Fero, M. F. Roussel, J. M. Roberts and C. J. Sherr, The p21(cip1) and p27(kip1) cdk 'inhibitors' are essential activators of cyclin d-dependent kinases in murine fibroblasts, Embo. J., 18 (1999), 1571-1583.doi: 10.1093/emboj/18.6.1571. |
[10] |
S. Chu, J. DeRisi, M. Eisen, J. Mulholland, D. Botstein, P. O. Brown and I. Herskowitz, The transcriptional program of sporulation in budding yeast, Science, 282 (1998), 699-705.doi: 10.1126/science.282.5389.699. |
[11] |
J. Culotti and L. H. Hartwell, Genetic control of the cell division cycle in yeast. 3. seven genes controlling nuclear division, Exp. Cell Res., 67 (1971), 389-401.doi: 10.1016/0014-4827(71)90424-1. |
[12] |
S. J. D'Souza, A. Vespa, S. Murkherjee, A. Maher, A. Pajak and L. Dagnino, E2f-1 is essential for normal epidermal wound repair, J. Biol. Chem., 277 (2002), 10626-10632.doi: 10.1074/jbc.M111956200. |
[13] |
H. L. Ford and A. B. Pardee, Cancer and the cell cycle, J. Cell Biochem., Suppl. 32-33 (1999), 166-172.doi: 10.1002/(SICI)1097-4644(1999)75:32+<166::AID-JCB20>3.0.CO;2-J. |
[14] |
A. Fotovati, K. Nakayama and K. I. Nakayama, Impaired germ cell development due to compromised cell cycle progression in skp2-deficient mice, Cell Div., 1 (2006), 4.doi: 10.1186/1747-1028-1-4. |
[15] |
J. M. Galan and M. Peter, Ubiquitin-dependent degradation of multiple f-box proteins by an autocatalytic mechanism, Proc. Natl. Acad. Sci. U.S.A., 96 (1999), 9124-9129.doi: 10.1073/pnas.96.16.9124. |
[16] |
T. S. Gardner, M. Dolnik and J. J. Collins, A theory for controlling cell cycle dynamics using a reversibly binding inhibitor, Proc. Natl. Acad. Sci. U.S.A., 95 (1998), 14190-14195.doi: 10.1073/pnas.95.24.14190. |
[17] |
Y. Geng, W. Whoriskey, M. Y. Park, R. T. Bronson, R. H. Medema, T. Li, R. A. Weinberg and P. Sicinski, Rescue of cyclin d1 deficiency by knockin cyclin e, Cell, 97 (1999), 767-777.doi: 10.1016/S0092-8674(00)80788-6. |
[18] |
Y. Geng, Q. Yu, E. Sicinska, M. Das, J. E. Schneider, S. Bhattacharya, W. M. Rideout, R. T. Bronson, H. Gardner and P. Sicinski, Cyclin e ablation in the mouse, Cell, 114 (2003), 431-443.doi: 10.1016/S0092-8674(03)00645-7. |
[19] |
M. Glotzer, A. W. Murray and M. W. Kirschner, Cyclin is degraded by the ubiquitin pathway, Nature, 349 (1991), 132-138.doi: 10.1038/349132a0. |
[20] |
A. Goldbeter, A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase, Proc. Natl. Acad. Sci. U.S.A., 88 (1991), 9107-9111.doi: 10.1073/pnas.88.20.9107. |
[21] |
C. H. Golias, A. Charalabopoulos and K. Charalabopoulos, Cell proliferation and cell cycle control: A mini review, Int. J. Clin. Pract., 58 (2004), 1134-1141.doi: 10.1111/j.1742-1241.2004.00284.x. |
[22] |
D. Gong, J. R. Pomerening, J. W. Myers, C. Gustavsson, J. T. Jones, A. T. Hahn, T. Meyer and J. Ferrell, Cyclin a2 regulates nuclear-envelope breakdown and the nuclear accumulation of cyclin b1, Curr. Biol., 17 (2007), 85-91.doi: 10.1016/j.cub.2006.11.066. |
[23] |
J. W. Harper and S. J. Elledge, Skipping into the e2f1-destruction pathway, Nat. Cell Biol., 1 (1999), E5-7.doi: 10.1038/8952. |
[24] |
L. H. Hartwell, Genetic control of the cell division cycle in yeast. ii. genes controlling dna replication and its initiation, J. Mol. Biol., 59 (1971), 183-194.doi: 10.1016/0022-2836(71)90420-7. |
[25] |
L. H. Hartwell, J. Culotti and B. Reid, Genetic control of the cell-division cycle in yeast. i. detection of mutants, Proc. Natl. Acad. Sci. U.S.A., 66 (1970), 352-359.doi: 10.1073/pnas.66.2.352. |
[26] |
A. Hershko, The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle, Cell Death Differ., 12 (2005), 1191-1197. |
[27] |
A. Hershko and A. Ciechanover, The ubiquitin system, Annual Rev. Biochem., 67 (1998), 425-4-79. |
[28] |
I. Hoffmann, G. Draetta and E. Karsenti, Activation of the phosphatase activity of human cdc25a by a cdk2-cyclin e dependent phosphorylation at the g1/s transition, Embo. J., 13 (1994), 4302-4310. |
[29] |
K. Iwamoto, Y. Tashima, H. Hamada, Y. Eguchi and M. Okamoto, Mathematical modeling and sensitivity analysis of g1/s phase in the cell cycle including the dna-damage signal transduction pathway, Biosystems, 94 (2008), 109-117.doi: 10.1016/j.biosystems.2008.05.016. |
[30] |
T. Jacks, A. Fazeli, E. M. Schmitt, R. T. Bronson, M. A. Goodell and R. A. Weinberg, Effects of an rb mutation in the mouse, Nature, 359 (1992), 295-300.doi: 10.1038/359295a0. |
[31] |
S. Jirawatnotai, D. S. Moons, C. O. Stocco, R. Franks, D. B. Hales, G. Gibori and H. Kiyokawa, The cyclin-dependent kinase inhibitors p27kip1 and p21cip1 cooperate to restrict proliferative life span in differentiating ovarian cells, J. Biol. Chem., 278 (2003), 17021-17027.doi: 10.1074/jbc.M301206200. |
[32] |
M. B. Kastan and J. Bartek, Cell-cycle checkpoints and cancer, Nature, 432 (2004), 316-323.doi: 10.1038/nature03097. |
[33] |
D. Knapp, L. Bhoite, D. J. Stillman and K. Nasmyth, The transcription factor swi5 regulates expression of the cyclin kinase inhibitor p40sic1, Mol. Cell Biol., 16 (1996), 5701-5707. |
[34] |
C. Koch and K. Nasmyth, Cell cycle regulated transcription in yeast, Curr. Opin. Cell Biol., 6 (1994), 451-459.doi: 10.1016/0955-0674(94)90039-6. |
[35] |
D. M. Koepp, J. W. Harper and S. J. Elledge, How the cyclin became a cyclin: Regulated proteolysis in the cell cycle, Cell, 97 (1999), 431-434.doi: 10.1016/S0092-8674(00)80753-9. |
[36] |
K. W. Kohn, Molecular interaction map of the mammalian cell cycle control and dna repair systems, Mol. Biol. Cell, 10 (1999), 2703-2734. |
[37] |
U. Kossatz, N. Dietrich, L. Zender, J. Buer, M. P. Manns and N. P. Malek, Skp2-dependent degradation of p27kip1 is essential for cell cycle progression, Genes Dev., 18 (2004), 2602-2607.doi: 10.1101/gad.321004. |
[38] |
O. Lavi and Y. Louzoun, What cycles the cell? - robust autonomous cell cycle models, Math Med Biol, 26 (2009), 337-359.doi: 10.1093/imammb/dqp016. |
[39] |
J. Lisztwan, A. Marti, H. Sutterluty, M. Gstaiger, C. Wirbelauer and W. Krek, Association of human cul-1 and ubiquitin-conjugating enzyme cdc34 with the f-box protein p45(skp2): Evidence for evolutionary conservation in the subunit composition of the cdc34-scf pathway, EMBO J., 17 (1998), 368-383.doi: 10.1093/emboj/17.2.368. |
[40] |
A. J. Lotka, "Elements of Physical Biology," Williams and Wilkins, Baltimore, 1925. |
[41] |
J. W. Ludlow, C. L. Glendening, D. M. Livingston and J. A. DeCarprio, Specific enzymatic dephosphorylation of the retinoblastoma protein, Mol. Cell Biol., 13 (1993), 367-372. |
[42] |
C. Lukas, C. S. Sorensen, E. Kramer, E. Santoni-Rugiu, C. Lindeneg, J. M. Peters, J. Bartek and J. Lukas, Accumulation of cyclin b1 requires e2f and cyclin-a-dependent rearrangement of the anaphase-promoting complex, Nature, 401 (1999), 815-818.doi: 10.1038/44611. |
[43] |
M. Malumbres, R. Sotillo, D. Santamaria, J. Galan, A. Cerezo, S. Ortega, P. Dubus and M. Barbacid, Mammalian cells cycle without the d-type cyclin-dependent kinases cdk4 and cdk6, Cell, 118 (2004), 493-504.doi: 10.1016/j.cell.2004.08.002. |
[44] |
A. Marti, C. Wirbelauer, M. Scheffner and W. Krek, Interaction between ubiquitin-protein ligase scfskp2 and e2f-1 underlies the regulation of e2f-1 degradation, Nat. Cell Biol., 1 (1999), 14-19.doi: 10.1038/8984. |
[45] |
A. Montagnoli, F. Fiore, E. Eytan, A. C. Carrano, G. F. Draetta, A. Hershko and M. Pagano, Ubiquitination of p27 is regulated by cdk-dependent phosphorylation and trimeric complex formation, Genes Dev., 13 (1999), 1181-1189.doi: 10.1101/gad.13.9.1181. |
[46] |
D. O. Morgan, Regulation of the apc and the exit from mitosis, Nat. Cell Biol., 1 (1999), E47-53.doi: 10.1038/10039. |
[47] |
M. C. Morris, A. Heitz, J. Mery, F. Heitz and G. Divita, An essential phosphorylation-site domain of human cdc25c interacts with both 14-3-3 and cyclins, J. Biol. Chem., 275 (2000), 28849-28857.doi: 10.1074/jbc.M002942200. |
[48] |
M. Murphy, M. G. Stinnakre, C. Senamaud-Beaufort, N. J. Winston, C. Sweeney, M. Kubelka, M. Carrington, C. Brechot and J. Sobczak-Thepot, Delayed early embryonic lethality following disruption of the murine cyclin a2 gene, Nat. Genet., 15 (1997), 83-86.doi: 10.1038/ng0197-83. |
[49] |
K. Nakayama, N. Ishida, M. Shirane, A. Inomata, T. Inoue, N. Shishido, I. Horii, D. Y. Loh and K. Nakayama, Mice lacking p27(kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors, Cell, 85 (1996), 707-720.doi: 10.1016/S0092-8674(00)81237-4. |
[50] |
K. I. Nakayama, S. Hatakeyama and K. Nakayama, Regulation of the cell cycle at the g1-s transition by proteolysis of cyclin e and p27kip1, Biochem. Biophys. Res. Commun., 282 (2001), 853-860.doi: 10.1006/bbrc.2001.4627. |
[51] |
P. Nash, X. Tang, S. Orlicky, Q. Chen, F. B. Gertler, M. D. Mendenhall, F. Sicheri, T. Pawson and M. Tyers, Multisite phosphorylation of a cdk inhibitor sets a threshold for the onset of DNA replication, Nature, 414 (2001), 514-521.doi: 10.1038/35107009. |
[52] |
R. Norel and Z. Agur, A model for the adjustment of the mitotic clock by cyclin and mpf levels, Science, 251 (1991), 1076-1078.doi: 10.1126/science.1825521. |
[53] |
P. Nurse, A long twentieth century of the cell cycle and beyond, Cell, 100 (2000), 71-78.doi: 10.1016/S0092-8674(00)81684-0. |
[54] |
D. A. Orlando, C. Y. Lin, A. Bernard, J. Y. Wang, J. E. Socolar, E. S. Iversen, A. J. Hartemink and S. B. Haase, Global control of cell-cycle transcription by coupled cdk and network oscillators, Nature, 453 (2008), 944-947.doi: 10.1038/nature06955. |
[55] |
M. Peter, The regulation of cyclin-dependent kinase inhibitors (ckis), Prog. Cell Cycle Res., 3 (1997), 99-108. |
[56] |
J. M. Peters, Scf and apc: The yin and yang of cell cycle regulated proteolysis, Curr. Opin. Cell Biol., 10 (1998), 759-768.doi: 10.1016/S0955-0674(98)80119-1. |
[57] |
B. Pfeuty and K. Kaneko, Minimal requirements for robust cell size control in eukaryotic cells, Phys. Biol., 4 (2007), 194-204.doi: 10.1088/1478-3975/4/3/006. |
[58] |
S. Prinz, E. S. Hwang, R. Visintin and A. Amon, The regulation of cdc20 proteolysis reveals a role for apc components cdc23 and cdc27 during s-phase and early mitosis, Curr. Biol., 8 (1998), 750-760.doi: 10.1016/S0960-9822(98)70298-2. |
[59] |
F. Puntoni and E. Villa-Moruzzi, Phosphorylation of protein phosphatase-1 isoforms by cdc2-cyclin b in vitro, Mol. Cell. Biochem., 171 (1997), 115-120.doi: 10.1023/A:1006892103306. |
[60] |
Z. Qu, W. R. MacLellan and J. N. Weiss, Dynamics of the cell cycle: Checkpoints, sizers, and timers, Biophys. J., 85 (2003), 3600-3611.doi: 10.1016/S0006-3495(03)74778-X. |
[61] |
T. Reis and B. A. Edgar, Negative regulation of de2f1 by cyclin-dependent kinases controls cell cycle timing, Cell, 117 (2004), 253-264.doi: 10.1016/S0092-8674(04)00247-8. |
[62] |
J. M. Roberts and C. J. Sherr, Bared essentials of cdk2 and cyclin E, Nat. Genet., 35 (2003), 9-10.doi: 10.1038/ng1234. |
[63] |
J. Rudolph, Targeting the neighbor's pool, Mol. Pharmacol., 66 (2004), 780-782.doi: 10.1124/mol.104.004788. |
[64] |
D. Santamaria, C. Barriere, A. Cerqueira, S. Hunt, C. Tardy, K. Newton, J. F. Caceres, P. Dubus, M. Malumbres and M. Barbacid, Cdk1 is sufficient to drive the mammalian cell cycle, Nature, 448 (2007), 811-815.doi: 10.1038/nature06046. |
[65] |
C. J. Sherr and J. M. Roberts, Living with or without cyclins and cyclin-dependent kinases, Genes Dev., 18 (2004), 2699-2711.doi: 10.1101/gad.1256504. |
[66] |
P. Sicinski, J. L. Donaher, S. B. Parker, T. Li, A. Fazeli, H. Gardner, S. Z. Haslam, R. T. Bronson, S. J. Elledge and R. A. Weinberg, Cyclin d1 provides a link between development and oncogenesis in the retina and breast, Cell, 82 (1995), 621-630.doi: 10.1016/0092-8674(95)90034-9. |
[67] |
M. J. Solomon, M. Glotzer, T. H. Lee, M. Philippe and M. W. Kirschner, Cyclin activation of p34cdc2, Cell, 63 (1990), 1013-1024.doi: 10.1016/0092-8674(90)90504-8. |
[68] |
M. J. Solomon and P. Kaldis, Regulation of cdks by phosphorylation, Results Probl. Cell Differ., 22 (1998), 79-109. |
[69] |
P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Botstein and B. Futcher, Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization, Mol. Biol. Cell, 9 (1998), 3273-3297. |
[70] |
K. Sriram, G. Bernot and F. Kepes, A minimal mathematical model combining several regulatory cycles from the budding yeast cell cycle, IET Syst. Biol., 1 (2007), 326-341.doi: 10.1049/iet-syb:20070018. |
[71] |
T. T. Su and J. Stumpff, Promiscuity rules? The dispensability of cyclin E and Cdk2, Sci. STKE, 2004 (2004), pe11.doi: 10.1126/stke.2242004pe11. |
[72] |
M. Sugimoto, N. Martin, D. P. Wilks, K. Tamai, T. J. Huot, C. Pantoja, K. Okumura, M. Serrano and E. Hara, Activation of cyclin d1-kinase in murine fibroblasts lacking both p21(Cip1) and p27(Kip1), Oncogene, 21 (2002), 8067-8074.doi: 10.1038/sj.onc.1206019. |
[73] |
S. Tamrakar, E. Rubin, and J. W. Ludlow, Role of prb dephosphorylation in cell cycle regulation, Front Biosci., 5 (2000), D121-137.doi: 10.2741/Tamrakar. |
[74] |
O. Tetsu and F. McCormick, Proliferation of cancer cells despite Cdk2 inhibition, Cancer Cell, 3 (2003), 233-245.doi: 10.1016/S1535-6108(03)00053-9. |
[75] |
J. E. Toettcher, A. Loewer, G. J. Ostheimer, M. B. Yaffe, B. Tidor and G. Lahav, Distinct mechanisms act in concert to mediate cell cycle arrest, Proc. Natl. Acad. Sci. U.S.A., 106 (2009), 785-790.doi: 10.1073/pnas.0806196106. |
[76] |
J. J. Tyson and B. Novak, Regulation of the eukaryotic cell cycle: Molecular antagonism, hysteresis, and irreversible transitions, J. Theor. Biol., 210 (2001), 249-263.doi: 10.1006/jtbi.2001.2293. |
[77] |
S. van den Heuvel and N. J. Dyson, Conserved functions of the prb and e2f families, Nat. Rev. Mol. Cell Biol., 9 (2008), 713-724.doi: 10.1038/nrm2469. |
[78] |
H. C. Vodermaier, Apc/c and scf: Controlling each other and the cell cycle, Curr. Biol., 14 (2004), R787-796.doi: 10.1016/j.cub.2004.09.020. |
[79] |
V. Volterra, "Animal Ecology," Chapman R. N., McGraw-Hill, New York., 1931, 409-448. |
[80] |
R. Wasch and F. R. Cross, Apc-dependent proteolysis of the mitotic cyclin clb2 is essential for mitotic exit, Nature, 418 (2002), 556-562.doi: 10.1038/nature00856. |
[81] |
J. Weinstein, Cell cycle-regulated expression, phosphorylation, and degradation of p55cdc. a mammalian homolog of cdc20/fizzy/slp1, J. Biol. Chem., 272 (1997), 28501-28511.doi: 10.1074/jbc.272.45.28501. |
[82] |
M. L. Whitfield, G. Sherlock, A. J. Saldanha, J. I. Murray, C. A. Ball, K. E. Alexander, J. C. Matese, C. M. Perou, M. M. Hurt, P. O. Brown and D. Botstein, Identification of genes periodically expressed in the human cell cycle and their expression in tumors, Mol. Biol. Cell, 13 (2002), 1977-2000. |
[83] |
L. Wu, C. Timmers, B. Maiti, H. I. Saavedra, L. Sang, G. T. Chong, F. Nuckolls, P. Giangrande, F. A. Wright, S. J. Field, M. E. Greenberg, S. Orkin, J. R. Nevins, M. L. Robinson and G. Leone, The E2f1-3 transcription factors are essential for cellular proliferation, Nature, 414 (2001), 457-462.doi: 10.1038/35106593. |
[84] |
M. Xu, K. A. Sheppard, C. Y. Peng, A. S. Yee and H. Piwnica-Worms, Cyclin a/Cdk2 binds directly to e2f-1 and inhibits the dna-binding activity of e2f-1/dp-1 by phosphorylation, Mol. Cell Biol., 14 (1994), 8420-8431. |
[85] |
K. Yang, M. Hitomi and D. W. Stacey, Variations in cyclin d1 levels through the cell cycle determine the proliferative fate of a cell, Cell Div., 1 (2006), 32.doi: 10.1186/1747-1028-1-32. |
[86] |
W. Zachariae and K. Nasmyth, Whose end is destruction: Cell division and the anaphase-promoting complex, Genes Dev., 13 (1999), 2039-2058.doi: 10.1101/gad.13.16.2039. |
[87] |
H. Zhang, R. Kobayashi, K. Galaktionov and D. Beach, P19skp1 and p45skp2 are essential elements of the cyclin A-CDK2 S phase kinase, Cell, 82 (1995), 915-925.doi: 10.1016/0092-8674(95)90271-6. |
[88] |
J. Zhang, X. Dong, Y. Fujimoto and H. Okamura, Molecular signals of mammalian circadian clock, Kobe J. Med. Sci., 50 (2004), 101-109. |
[89] |
L. Zhang and C. Wang, F-box protein skp2: A novel transcriptional target of e2f, Oncogene, 25 (2006), 2615-2627.doi: 10.1038/sj.onc.1209286. |
[90] |
P. Zhou and P. M. Howley, Ubiquitination and degradation of the substrate recognition subunits of scf ubiquitin-protein ligases, Mol. Cell, 2 (1998), 571-580.doi: 10.1016/S1097-2765(00)80156-2. |