• Previous Article
    Pandemic mitigation: Bringing it home
  • MBE Home
  • This Issue
  • Next Article
    Multiple outbreaks for the same pandemic: Local transportation and social distancing explain the different "waves" of A-H1N1pdm cases observed in México during 2009
2011, 8(1): 49-64. doi: 10.3934/mbe.2011.8.49

Joint quantification of transmission dynamics and diagnostic accuracy applied to influenza

1. 

PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012

Received  June 2010 Revised  September 2010 Published  January 2011

The influenza A (H1N1) pandemic 2009 posed an epidemiological challenge in ascertaining all cases. Although the counting of all influenza cases in real time is often not feasible, empirical observations always involve diagnostic test procedures. This offers an opportunity to jointly quantify transmission dynamics and diagnostic accuracy. We have developed a joint estimation procedure that exploits parsimonious models to describe the epidemic dynamics and that parameterizes the number of test positives and test negatives as a function of time. Our analyses of simulated data and data from the empirical observation of interpandemic influenza A (H1N1) from 2007-08 in Japan indicate that the proposed approach permits a more precise quantification of the transmission dynamics compared to methods that rely on test positive cases alone. The analysis of entry screening data for the H1N1 pandemic 2009 at Tokyo-Narita airport helped us quantify the very limited specificity of influenza-like illness in detecting actual influenza cases in the passengers. The joint quantification does not require us to condition diagnostic accuracy on any pre-defined study population. Our study suggests that by consistently reporting both test positive and test negative cases, the usefulness of extractable information from routine surveillance record of infectious diseases would be maximized.
Citation: Hiroshi Nishiura. Joint quantification of transmission dynamics and diagnostic accuracy applied to influenza. Mathematical Biosciences & Engineering, 2011, 8 (1) : 49-64. doi: 10.3934/mbe.2011.8.49
References:
[1]

N. T. J. Bailey, "The Elements of Stochastic Processes with Applications to the Natural Sciences,", Wiley, (1964).   Google Scholar

[2]

H. M. Babcock, L. R. Merz, E. R. Dubberke and V. J. Fraser, Case-control study of clinical features of influenza in hospitalized patients,, Infect. Control. Hosp. Epidemiol., 29 (2008), 921.  doi: 10.1086/590663.  Google Scholar

[3]

R. B. Banks, "Growth and Diffusion Phenomena: Mathematical Frameworks and Applications,", Springer, (1993).   Google Scholar

[4]

S. A. Call, M. A. Vollenweider, C. A. Hornung, D. L. Simel and W. P. McKinney, Does this patient have influenza?, JAMA, 293 (2005), 987.   Google Scholar

[5]

G. Chowell, M. A. Miller and C. Viboud, Seasonal influenza in the United States, France, and Australia: Transmission and prospects for control,, Epidemiol. Infect., 136 (2008), 852.  doi: 10.1017/S0950268807009144.  Google Scholar

[6]

B. J. Cowling, L. L. Lau, P. Wu, H. W. Wong, V. J. Fang, S. Riley and H. Nishiura, Entry screening to delay local transmission of 2009 pandemic influenza A (H1N1),, BMC Infect. Dis., 10 (2010).  doi: 10.1186/1471-2334-10-82.  Google Scholar

[7]

C. Fraser, C. A. Donnelly, S. Cauchemez, W. P. Hanage, M. D. van Kerkhove, T. D. Hollingsworth, J. Griffin, R. F. Baggaley, H. E. Jenkins, E. J. Lyons, T. Jombart, W. R. Hinsley, N. C. Grassly, F. Balloux, A. C. Ghani, N.M. Ferguson, A. Rambaut, O.G. Pybu, Pandemic potential of a strain of influenza A (H1N1): Early findings,, Science, 324 (2009), 1557.  doi: 10.1126/science.1176062.  Google Scholar

show all references

References:
[1]

N. T. J. Bailey, "The Elements of Stochastic Processes with Applications to the Natural Sciences,", Wiley, (1964).   Google Scholar

[2]

H. M. Babcock, L. R. Merz, E. R. Dubberke and V. J. Fraser, Case-control study of clinical features of influenza in hospitalized patients,, Infect. Control. Hosp. Epidemiol., 29 (2008), 921.  doi: 10.1086/590663.  Google Scholar

[3]

R. B. Banks, "Growth and Diffusion Phenomena: Mathematical Frameworks and Applications,", Springer, (1993).   Google Scholar

[4]

S. A. Call, M. A. Vollenweider, C. A. Hornung, D. L. Simel and W. P. McKinney, Does this patient have influenza?, JAMA, 293 (2005), 987.   Google Scholar

[5]

G. Chowell, M. A. Miller and C. Viboud, Seasonal influenza in the United States, France, and Australia: Transmission and prospects for control,, Epidemiol. Infect., 136 (2008), 852.  doi: 10.1017/S0950268807009144.  Google Scholar

[6]

B. J. Cowling, L. L. Lau, P. Wu, H. W. Wong, V. J. Fang, S. Riley and H. Nishiura, Entry screening to delay local transmission of 2009 pandemic influenza A (H1N1),, BMC Infect. Dis., 10 (2010).  doi: 10.1186/1471-2334-10-82.  Google Scholar

[7]

C. Fraser, C. A. Donnelly, S. Cauchemez, W. P. Hanage, M. D. van Kerkhove, T. D. Hollingsworth, J. Griffin, R. F. Baggaley, H. E. Jenkins, E. J. Lyons, T. Jombart, W. R. Hinsley, N. C. Grassly, F. Balloux, A. C. Ghani, N.M. Ferguson, A. Rambaut, O.G. Pybu, Pandemic potential of a strain of influenza A (H1N1): Early findings,, Science, 324 (2009), 1557.  doi: 10.1126/science.1176062.  Google Scholar

[1]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[2]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[3]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[4]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[5]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[6]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[7]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[8]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[9]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[10]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[11]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[12]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[13]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[14]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[15]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[16]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[17]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[18]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[19]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[20]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]